Recent Results from The Large High Altitude Air Shower Observatory (LHAASO)

Jordan Goodman Erice Summer 2022

- Large High Altitude Air Shower Observatory (LHAASO)
 - Disclaimer I am not a LHAASO collaborator. (More of an envious admirer)!
 - All the material in this talk was taken from public sources or given to me by Zhen Cao
- There are many similarities between HAWC and LHAASO
 - Cost in not one of them!

Talk Overview

Erice Summer School 2022 - J Goodman

LHAASO Collaboration (by country)

U. Geneva, Switzerland VHE gamma astro.

Yi Zhang

VHE Gamma Astro. and CR phys.

Inst. of Phys. and others, Czech Rep.

VHE gamma astro.

and Criphys.

J Goodman — Particle Astrophysics – Univ. of Maryland

RAS NPR, Russia CR phys.

> **24 Chinese** institutions

Mahidol U. Thailand Solar CR phys. and **Space-weather**

> Adelaide U. Australia CR phys. **VHE Gamma Astro.**

Mt. Haizi (4410 m a.s.l., 29°21' 27.6" N, 100°08'19.6" E), Sichuan, China

Yi Zhang

Where is LHAASO

J Goodman — Particle Astrophysics – Univ. of Maryland

A Large area EAS array covering 1.3 km²

- 5242 Electron Detectors (ED)s
 - 1 m² each
 - 15 m spacing ____
- 1188 Muon Detectors (MD)s \bullet
 - 36 m² each
 - 30 m spacing _____
- 3120 Water Cherenkov Det. WCDs
 - 25 m² each
- 18 Wide Field Cherenkov \bullet Telescopes WFCTs

- TeV gamma-ray survey → WCDA (100 GeV-30 TeV) – AGN, GRB, survey new source, ...
- >20 TeV gamma-ray survey \rightarrow KM2A (10TeV-1PeV) – SNR, PWN, Superbubble, diffuse around 100TeV, ...
- Individual nuclei spectra \rightarrow WFCTA (10TeV to EeV) Different configures
 - Combined with WCDA, WCDA++, KM2A
- Benefit regions:
 - Anisotropy, Solar physics, dark matter, EBL, IGMF, Lorentz invariance, hadronic interaction, ...

Hybrid Detection of EASs by LHAASO

CATCHING RAYS

China's new observatory will intercept ultra-high-energy y-ray particles and cosmic rays.

~25.000 m

Courtesy: Nature

80,000-m² surfacewater Cherenkov 1,171 underground detector water Cherenkov tanks

LHAASO birds-eye View from a drone — May. 2021

J Goodman — Particle Astrophysics – Univ. of Maryland

J Goodman — Particle Astrophysics – Univ. of Maryland

Living Space

Three Gorges Dam - \$22B

J Goodman — Particle Astrophysics – Univ. of Maryland

Building the Experiment

J Goodman — Particle Astrophysics – Univ. of Maryland

LHAASO birds-eye View from a drone

KM2A Electromagnetic particle Detectors

Scintillator Detector Unit

1/2 ED array, 2365 EDs started 2019-12 3/4 ED array, 3978 EDs (total 5242), started operation 6/12/2020

Trigger rate ~ 1900Hz,

1.45TB one day

J Goodman — Particle Astrophysics – Univ. of Maryland

ED	S	peci	ficat	tions
	· · · ·			

Detection area	1m×1m; 5mm Lead covered
Detection efficiency	> 95%
Time resolution	< 2ns
Dynamic range	1~10000 particles/m²; 25%@1 particle, 5%@10000 particles
single channel rate	<2kHz@working Gain
Stable operation	> 20yrs (4410m, 0.6atm., ±25°C)

KM2A

MD

J Goodman — Particle Astrophysics – Univ. of Maryland

Secondary particles of an EAS detected by the ED array. The green plane is EAS front plane. The red squares are the fired ED. The black circles are the fired MD. The second front is caused by MD's dead time.

J Goodman — Particle Astrophysics – Univ. of Maryland

KM2A Muon Detector array

- 1/2 MD array, 592 MDs (total 1188) started operation from 12/2019
- 3/4 MD array, 914 MDs (total 1188) started operation from 12/2020

16

Installation of a Muon Detector

Foundation pit treatment

Fabrication of side wall and bottom plate

Install liner and PMT

ultrapure water infusion

J Goodman — Particle Astrophysics – Univ. of Maryland

debug —

Covering soil

intergrated test

e /

≻ 5195 EDs • $1 \text{ m}^2 \text{ each}$ • 15 m spacing ≻ 1188 MDs 36 m² each 30 m spacing

Muon detector (MD) μ[±] electronics

KM2A: 1.36 (km)²

Inner View of one ED

Inside of WCDA-3

Inside of WCDA-3

J Goodman — Particle Astrophysics – Univ. of Maryland

20210511/131236/0.554789897: nTrig=-1, 0=37.81±0.02°, φ=103.39±0.02°

- WCDA-1 started operating
 - WCDA-2 started operating

- WCDA-3 started operating

Telescope parameters:

- ~5 m² spherical mirror
- Camera: 32×32 SiPMs array
- FOV: $16^{\circ} \times 16^{\circ}$
- Pixel size: 0.5°

Wide Field of View Cherenkov Telescope (WFCTA)

Mirror

SiPM camera

SiPM and Winstone cone

Erice 2022

22

Absolute energy scale with WCDA-1

- In the energy range from 1 TeV to 50 TeV, the cosmic rays are dominated by protons and helium nuclei.
- The ratio of protons and helium nuclei can be obtained from CREAM and DAMPE.
- The trigger efficiency of WCDA-1 for protons and helium is obtained from simulation.

System uncertainties:

•

•

- Uncertainty caused by 10% changing of the ratio of protons and helium nuclei is about 3%.
- **Uncertainty from different hadronic models (EPOS-LHC** vs. QGSJET-II04) is less than 2%.
- An uncertainty of 4% is caused by the energy and angular resolution.

 $E(GeV) = aN_{pe}^{b}$ $a = 1.33_{-1.06}^{+5.26}$ $b = 0.95 \pm 0.17$

Absolute energy scale propagates from WCDA to WFCTA

- WFCTA by using common-triggered events.
- - $|core_x| < 55 \text{ m}, |core_v| < 55 \text{ m}$

It is impossible for WFCTA to measure Moon shadow shifts directly. The absolute energy scale obtained by WCDA-1 can be propagated to

Absolute energy scale of WFCTA

- the common trigger events.
 - The energy reconstructed by WFCTA is 21.9 ±0.1 TeV; 23.4±0.1±1.3 TeV by the formula of the absolute energy scale. • The two energies are consistent with each other within uncertainties.
- \succ It is the first time that Cherenkov telescopes have the absolute energy scale.

LHAASO Collaboration, PHYS. REV. D 104, 062007 (2021)

> And then the absolute energy scale obtained by WCDA is propagated to WFCTA by using

- ^{×10[°]} WCDA Calibration result (8 months,
 - \checkmark 21.0 ±6.5 TeV for all events 16.2 ±6.2 TeV for shower core falling inside WCDA. The uncertainty largely dominated by the low statistics. After 4 years, the uncertainty will be < 10%.

Cutting on ratio $N_{\mu}/N_e < 1/230$ • BG-free (N_{γ} >10 N_{CR}) Photon Counting for showers E>100 TeV from the Crab

Counting number of measured muons in a shower

1.4 PeV Photon ^{意体接字审线观谢} from Cygnus Direction Record by KM2A p.33-36, 2021 LHAASO, Nature, 594,

-2

log(<u>N</u>

In total, 1044 events that have energy >1.4PeV are measured by KM2A in 1° cone of the direction of the source in Cygnus constellation. The criterion of muon-content <1/941 cuts **3.7 million** non-photon events, thus estimates the chance probability of 0.03% !

- The duty cycle of KM2A is >99.4%
- Event rate 2x10⁸ /day
- The duty cycle of WCDA is 98.4%
- Event rate 3x10⁹ /day
- **Data acquisition time of WFCTA >1400** hrs

Overall Duty Cycle = 98.39%

%

Duty

aily

Days (2022/01/01 - 2022/07/03)

The coverage of 3.5 orders of magnitudes of energy 1 - 12 TeV **PSF: 0.22**°

25-100 TeV 0.30°

0.1-1.2 PeV 0.15°

 LHAASO: Covering 3.5 decade Agreeing with other below 100 TeV Self cross-checking KM2A LHAASO-KM2A: 	experiments between WCDA &	
 Unique UHE SED A PeVatron without 	ambiguity	1
 Clear origin: a well-l An extreme e-a 	known PWN accelerator:	1
 > 2.3 PeV electro > in ~0.025 pc cc 	ns ompact region	ndex
accelerating e 15% (1000× SNR shock was	fficiency of better than aves)	

SED of the Crab

Erice Summer School 2022 - J Goodman

Energy reconstruction of KM2A

• The energy resolution is better than 14% for photons above 100 TeV arriving from a zenith angle of <35.

Inner ring, jets and knots

Chandra has observed many knots in between the pulsar and the inner ring
 They are apparently in the region that ~PeV photons may be emitted by electrons

0.18 pc 0.025 pc

LHAASO, Science, DOI10.1126/science.abg5137, 2021

- Perfect interpretation of one-zone electronic origin up to 50TeV
- Reasonable extension up to 1 PeV, with a deviation of 4 σ
- Can not rule out proton
 origin of photons ~1.1 PeV, yet

SED of the Crab: Extreme E-accelerator

Relaxing the tension of 2.3 PeV electron's acceleration Origin of CRs above the knee: a Super-PeVatron

Discovery in KM2A Survey Our Galaxy is full of PeVatrons

Table 1 | UHE y-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10+0.16	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4 0.27 ± 0.02		0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

12 PeVatrons are discovered • High Standard: significance > 7σ BG-free: Cosmic Ray background <10-4 rejection rate High Statistics: 530 UHE photons Multiple Type of Sources

UHE γ-ray (0.1-1 PeV) Sky Map

240

Crab Nebula

track.

S

LHAASO sky map (E>100TeV)

Significance > 7-sigma

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202 Crab	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326 1825 region	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3. <mark>6</mark> 5	8.5	0.26 - 0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621 MGRO1908	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102 Cygnus OF	3 308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057Boomerang	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Celestial coordinates (RA, dec.); statistical significance of detection above 100 TeV (calculated using a point-like template for the Crab Nebula and LHAASO J2108+5157 and 0.3° extension templates for the other sources); the corresponding differential photon fluxes at 100 TeV; and detected highest photon energies. Errors are estimated as the boundary values of the area that contains ±34.14% of events with respect to the most probable value of the event distribution. In most cases, the distribution is a Gaussian and the error is 1 σ .

Extended Data Table 2 | List of energetic astrophysical objects possibly associated with each LHAASO source

LHAASO S	Source	Possible Origin	Туре	Distance (kpc)	Age $(kyr)^a$	$L_s ({\rm erg/s})^b$	Potential TeV Counterpart ^c
LHAASO J05.	34+2202	PSR J0534+2200	PSR	2.0	1.26	$4.5 imes10^{38}$	Crab, Crab Nebula
LHAASO J18	25-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	$2.8 imes 10^{36}$	HESS J1825-137, HESS J1826-130,
		PSR J1826-1256	PSR	1.6	14.4	$3.6 imes10^{36}$	2HWC J1825-134
LHAASO J18	39-0545	PSR J1837-0604	PSR	4.8	33.8	$2.0 imes10^{36}$	2HWC J1837-065, HESS J1837-069
		PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes10^{36}$	HESS J1841-055
LHAASO J18	43-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
							2HWC J1844-032
LHAASO J18	49-0003	PSR J1849-0001	PSR	7^{g}	43.1	$9.8 imes10^{36}$	HESS J1849-000, 2HWC J1849+00
		W43	YMC	5.5^{h}			
LHAASO J19	08+0621	SNR G40.5-0.5	SNR	3.4^i	$\sim 10-20^{j}$		MGRO J1908+06, HESS J1908+063
		PSR 1907+0602	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARGO J1907+0627, VER J1907+06
		PSR 1907+0631	PSR	3.4	11.3	$5.3 imes10^{35}$	2HWC 1908+063
LHAASO J192	29+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes10^{36}$	2HWC J1928+177, 2HWC J1930+1
		PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1930+188
		SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$		
LHAASO J19	56+2845	PSR J1958+2846	PSR	2.0	21.7	$3.4 imes10^{35}$	2HWC J1955+285
		SNR G66.0-0.0	SNR	2.3 ± 0.2^d			
LHAASO J20	18+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	$3.4 imes10^{36}$	MGRO J2019+37, VER J2019+368,
		Sh 2-104	H II/YMC	$3.3 \pm 0.3^m / 4.0 \pm 0.5^n$		_	VER J2016+371
LHAASO J203	32+4102	Cygnus OB2	YMC	1.40 ± 0.08^o			TeV J2032+4130, ARGO J2031+41
		PSR 2032+4127	PSR	1.40 ± 0.08^{o}	201	$1.5 imes10^{35}$	MGRO J2031+41, 2HWC J2031+41
		SNR G79.8+1.2	SNR candidate		1.	. 	VER J2032+414
LHAASO J210	08+5157				V. <u></u>	-	
LHAASO J22	26+6057	SNR G106.3+2.7	SNR	0.8^p	$\sim 10^p$		VER J2227+608, Boomerang Nebul
		PSR J2229+6114	PSR	0.8^{p} 45	$\sim 10^p$	$2.2 imes 10^{37}$	

HAWC LHAASO Comparison

Erice Summer School 2022 - J Goodman

KM2A Survey Do not observe clear cut-off up to ~1 PeV

PeVatrons No trend of cut-off in SED of γ-ray sources Updates using newer data show continuous extension to higher

E_{max} (PeV) 0.57 +- 0.19

0.44 +- 0.55

0.42 +- 0.16

J Goodman — Particle Astrophysics – Univ. of Maryland

>100 TeV: sign=16.4 σ (Extension=0.3°) **R.A.=276.45° Decl.-13.45°**

The 68% contamination angle is 0.62° for LHA ASO J1825-1326

HESS J1825-137

30m

28m

Declination (J2000)

The Fermi/LAT detected the radio-quiet γ -ray pulsar PSR J1826 – 1256

RA: 276.54° Dec: -12.94°

Age $\tau = 1.44 \times 10^4$ yr

 $\dot{E}=3.6 \times 10^{36} \text{ erg s}^{-1}$

PSR J1826-1256 to HESS J1825-137 Distance: 0.64°

HESS J1826-130

J Goodman — Particle Astrophysics – Univ. of Maryland

eHWC J1825-134

J1825-134 Energy dependent morphology

Significa - 4 Jman — Particle Astrophysic

10

6

[σ] 8

DCe

>25 TeV

J Goodman — Particle Astrophysics – Univ. of Maryland

>100 TeV

J1825-134 >25 TeV & >100 TeV morphology

HAWC

>56TeV

J Goodman — Particle Astrophysics – Univ. of Maryland

LHAASO

>100 TeV

J1825-134 >56 TeV & >100 TeV morphology

HAWC

>56TeV

J Goodman — Particle Astrophysics – Univ. of Maryland

LHAASO

J1825-134 >56 TeV & >100 TeV morphology

HAWC

>56TeV

J Goodman — Particle Astrophysics – Univ. of Maryland

LHAASO

Erice 2022

>100 TeV morphology

sign=16.4 σ Extension=0.3° R.A.=276.45° Decl.-13.45° sign=15.0 σ Extension=0.34 ra = 276.47° +0.12° -0.15° $dec = -13.69^{\circ} + 0.33^{\circ} - 0.18^{\circ}$

J Goodman — Particle Astrophysics – Univ. of Maryland

Morphology test: point-like source

>25 TeV

J Goodman — Particle Astrophysics – Univ. of Maryland

HAW(

Morphology test: two point-like sources

-11.5

J Goodman — Particle Astrophysics – Univ. of Maryland

278.0

Morphology test: 2-D Gaussian+PS

J Goodman — Particle Astrophysics – Univ. of Maryland

Morphology test: 2-D Gaussian+PS

TS_ext=0.68 sigma_ul=0.33° (95%)

TS_ext=0.41 sigma_ul=0.25°(95%)

Two point-like sources!

276

275

>56TeV

J Goodman — Particle Astrophysics – Univ_of Maryland

LHAASO J1826-1256

TS=214.08

J Goodman — Particle Astrophysics – Univ. of Maryland

LHAASO J1826-1256 & J1825-1345(>25 TeV)

LHAASO J1825-1345

TS=393.73

J Goodman — Particle Astrophysics – Univ. of Maryland

Two UHE sources: LHAASO J1825-1345 & LHAASO J1826-1256 Associated with HESS and observation,

Summary

New Source Discovery

- WCDA has accumulated data for 16 months
- KM2A for 12 months
- LHAASO catalog Ver-1 will be published soon with many new VHE/UHE sources discovered

LHAASO J0341+5258

ApJL 917:L4 (2021)

LHAASO J2108+5157

Halo of PSR J0622 + 3749

ApJL 919:L22 (2021) PRL 126:241103 (2021)

http://english.ihep.cas.cn/lhaaso/index.html

Selection of γ -rays out of CR background Active Area for Muons vs. Array Area: 4%

~1 PeV CR event: many muons

MJD:58788, NHitE:656, NHitM:154, Theta:31.2deg, Phi:284.0deg

~ 1 PeV y-ray event : very few muons

Discovery Using KM2A Onset of UHE γ–ray Astronomy

E > 0.1 PeV: all types of candidates

◆ Spectroscopy: 15% resolution

Morphology: 0.25°PSF

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age (kyr) ^a	$L_s ({\rm erg/s})^b$	Potential TeV Counterpart
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	$2.8 imes 10^{36}$	HESS J1825-137, HESS J1
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	2.0×10^{36}	2HWC J1837-065, HESS J
	PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^{g}	43.1	$9.8 imes 10^{36}$	HESS J1849-000, 2HWC J
	W43	YMC	5.5^{h}			
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^{i}	$\sim 10 - 20^{j}$	_	MGRO J1908+06, HESS J
	PSR 1907+0602	PSR	2.4	19.5	$2.8 imes 10^{36}$	ARGO J1907+0627, VER
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HWC J1928+177, 2HWC
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$		
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	37 <u>—17</u>	3 <u>x</u> -	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7 l}_{-1.4}$	17.2	$3.4 imes 10^{36}$	MGRO J2019+37, VER J2
	Sh 2-104	H II/YMC	$3.3\pm 0.3^m\!/\!4.0\pm 0.5^n$	10		VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o		2 <u></u>	TeV J2032+4130, ARGO J
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	1.5×10^{35}	MGRO J2031+41, 2HWC
	SNR G79.8+1.2	SNR candidate				VER J2032+414
LHAASO J2108+5157	÷ <u>——————</u>	<u> </u>	<u> </u>	<u></u>		
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^{p}	$\sim 10^p$. 	VER J2227+608, Boomera
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	2.2×10^{37}	
Non William		- STR -	UMIMIC)	~ ~ m	Con Ll	IMIMING)

LHAASO J1908+0621

Multi Wavelength analysis reveals more exciting features 10^{-9} Hadronic process 10-10 dominates the S 10⁻¹¹ ə 5 E² J(E)[erg cm⁻ **UHE emission ?** 10-12 SNRs may be still strong candidates 10-13 for PeVatrons 10-14

- P-P interaction (SNR)
- Synchrotron (SNR)

- H.E.S.S.
- VERITAS

In the superluminal LIV

$$\begin{split} \gamma &\longrightarrow e^- e^+ \\ \alpha_0 &\leq \frac{4m_e^2}{E_\gamma^2 - 4m_e^2}, \\ E_{LIV}^{(1)} &\geq 9.57 \times 10^{23} \text{eV} \left(\frac{E_\gamma}{\text{TeV}}\right)^3, \\ E_{LIV}^{(2)} &\geq 9.78 \times 10^{17} \text{eV} \left(\frac{E_\gamma}{\text{TeV}}\right)^2. \end{split}$$

 $\gamma \rightarrow 3\gamma$ $\Gamma_{\gamma \to 3\gamma} = 5 \times 10^{-14} \frac{E_{\gamma}^{19}}{10^{110}}$ $\overline{m_e^8 E_{LIV}^{(2)10}}$ $\left(\frac{E_{\gamma}}{\text{TeV}}\right)^{1.9}$. $E_{LIV}^{(2)} > 3.33 \times 10^{19} \text{eV} \left(\frac{L}{1}\right)^{0.1} \left(\frac{L}{1}\right)^{0.1}$

Э 10²⁷ Ш

LHAASO Coll., Phys.Rev.Lett. 128 (2022) 5, 051102, Phys.Rev.Lett. 126 (2022) 051102

高海拔宇宙後観测站

New CLs method

Source	L (kpc)	$E_{\rm max}$	$E_{\rm cut}^{95\%}$
10524+2202	2.0	0.99	0.75+0.043
J2032+4102	1.4	1.42	$1.14^{+0.06}_{-0.06}$

LHAASO is completely built, and in full operation since July 2021 **Open-up "UHE (>0.1 PeV) Astronomy"**

- **12 PeVatrons are discovered in our galaxy** (1)
- A photon at 1.4 PeV is recorded toward Cygnus constellation (2)
- **First Discoveries**:
- Our galaxy is full of PeVatrons accelerating particles over 1 PeV (1)**Potential CR origins: many type of candidates** (2)
- The Crab: extreme e-PeVatron emitting 1.1 PeV y posing challenges
- (3) Many new sources are discovered 4
- Fundamental rules, e.g. LIV, are tested in extreme condition Precision Measurements of individual species C

will be measured at first time

Some comparisons Cygnus Cocoon

Some comparisons

HAWC + VERITAS joint analysis

Some comparisons

The Future

The Southern Wide-field Gamma-ray Observatory

Steradian field of view Modest collection area

> Few ns spread in particle arrival at each detector

THE FERMI BUBBLES

14 10 1

Image Credit: NASA

20

.

Image Credit: HAWC Collab. (Preliminary)

HAWC

THE GALACTIC CENTRE

Image Credit: SARAO

Status & Plan

SWGO R&D Phase Milestones

- M1 R&D Phase Plan Established
- M2 Science Benchmarks Defined
- M3 Reference Configuration & Options Defined
- M4 Site Shortlist Complete
- M5 Candidate Configurations Defined
- M6 Performance of Candidate Configurations Evaluated
- M7 Preferred Site Identified
- M8 Design Finalised

 \checkmark

 \checkmark

 \checkmark

M9 Construction & Operation Proposal Complete

SWGO partners →47 institutes in 12 countries* →+ supporting scientists

R&D Phase Kick off meeting Nov 2019 Expected completion 2023 Site and Design Choices made Then: **Preparatory Phase Detailed construction** planning **Engineering Array** (Full) Construction Phase 2026 +

-1.5

Relative Intensity [10⁻³]

Science Case

Transient Sources: Gamma-ray Bursts

Galactic Accelerators: PeVatron Sources

Galactic Accelerators: PWNe and TeV Halos

Diffuse Emission: Fermi Bubbles

Fundamental Physics: Dark Matter from GC Halo

Cosmic-rays: Mass-resolved dipole / multipole anisotropy

Equatorial

1.5

Design Drivers

Low-energy sensitivity & Site altitude^{*a*}

High-energy sensitivity & Energy resolution^b

Extended source sensitivity & Angular resolution^c

Background rejection

Mid-range energy sensitivity Site latitude^d

Muon counting capability^e

Chile 4.8 k

Lake Sibinacocha (Peru)

La az Chacaltaya (Bolivia) Bolivia Cochabambao

Santa Cr de la Sie

Alto Tocomar (Argentina...

Peru 4.9 k

Chile 4.8 k

Site shortlisting: September 2022 Site team visits: October 2022 Preferred Site identified: Autumn 2023 On-site prototyping activities: from 2022

Chacaltaya (Bolivia)

STAT

Bolivia

Santa C de la Sie

Alto Tocomar (Argentina...

Peru 4.9 k

Natural Lake

Artificial Lake/Pond

Steel Tank

Rotomolded Plastic

WCD Unit

*cooperation with KM3NeT, MoU in prep.

Tank

Natural Lake

Artificial Lake/Pond

Steel Tank

Rotomolded Plastic

Е

С

the state of the s

2.5 m

0.5 m

.

1-1-1

element of background rejection – two approaches under evaluation

4.00 m

A1

500 m

600 GeV

요 왜 적 가는 것 같 것 것

14 TeV

35 degree zenith angle

Color = time

.

Solution Strain Str

Resolution?

Neutrino Syner

SWGO+LHAASO

Full sky map of TeV-PeV γ emission

Strongly complements new generation of **neutrino instruments**

Mapping out diffuse emission / separating IC from pion decay emission, Dark Matter search +++

Nearby transients/flares

start in a second s

Transients

Instantaneous / short-timescale sensitivity of ground-particle detectors is much worse than IACTs! Especially at low E!!

So why are they still interesting for transients? **100% duty cycle** \rightarrow higher rate of high luminosity and/or nearby events (nearby bursts are very important \rightarrow GWs, EBL systematics, +++)

Zero observation delay - can potentially catch events with fluxes many orders of magnitude higher No need to trigger!

Blind searches and can check offline for 'slow' alerts

back!

e.g. cubesats ++ many new / near future alert sources which can come **hours late**

SWGO can bring the 10s deg² error boxes (GBM, GW) down to arcmin size

Fermi: 1 GeV CTA/SWGO: few 100 GeV

- e.g. afterglow triggers from optical and radio \rightarrow look
- Order of magnitude **1 minute sensitivity**: Fermi-LAT: 10⁻⁷, SWGO: 10⁻⁹, CTA: 10⁻¹¹ erg/cm²/s

