Erice Summer School 2022 Jordan Goodman - University of Maryland GAMMA RAY DETECTION WITH AIR SHOWERS

Cosmic Ray Discovery

radiation of great penetrating power entering our atmosphere from above."

Elevation	Rate
Ground	12
Ikm	10
2 km	12
3.5 km	15
5 km	27

V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift, 13:1084-1091, November 1912.

Physikalische Zeitschrift: "The results of these observations seem best explained by a

Victor Franz Hess

Cosmic Rays

- The flux charged cosmic rays follows nearly a single power law over:
 - 10 decades in energy
 - 30 decades in flux
- Single particles have been observed with energies above 10²⁰eV!
- There are several "kinks" in the spectrum where the exponent changes, steepening at the "knee" and flattening at the "ankle".
- The source of the high-energy cosmic rays remains elusive.
- 10²⁰ev√s equivalent is 430 TeV

Detectors in Particle Astrophysics

Low-energy CRs: rather high flux (1/ m² s) but absorbed in the upper atmosphere. **Direct detection (top of the** atmosphere or in space)

Balloons Rockets Satellites

High energy cosmic rays: very rare (1/km² y), but "penetrating" up to ground (atmospheric air-showers). Indirect detection: long-lived large arrays (ground level)

Large telescopes **Extensive Air showers arrays**

Space-based Gamma Ray Detectors

Erice Summer School 2022 - J

Techniques (Space, Air, Ground)

Erice Summer School 2022 - J Goodman

EXTENSIVE AIR SHOWERS

- A high energy primary particle, upon entering the atmosphere, initiates a chain of nuclear interactions

DIFFERENT DETECTORS FOR DIFFERENT EAS OBSERVABLES

Measurement of Cherenkov light with telescopes or wide angle pmts

> Measurement of particles with tracking detectors or calorimeters

First interaction (usually several 10 km high)

Air shower evolves (particles are deated and most of them later ston or dealer) radio

detectors

Some of the particles reach the ground

Measurement of fluorescence light

Measurement of

Measurement with radio emission scintillation counters

rticles with rticles with rticles with

Measurement of high energy muons deep underground

Gamma-Ray/Cosmic-Ray Astronomy

Energy Range	Nomenclatur e	Method	Technique	Examples
10 MeV – 30 GeV	High Energy (HE)	Satellite Based Direct Detection	Direct Particle Detection	FERMI SWIFT AMS
30 GeV – 100 TeV	Very High Energy (VHE)	Ground Based Indirect Air Shower Detection	Atm. Cherenkov From shower Surface Shower-front detection (Water Cherenkov or Scintillator)	HESS MAGIC HAWC VERITAS LHAASO
>100 TeV	(UHE) (EHE)	Ground based Indirect Air Shower Detection	Surface Shower-front detection (Water Cherenkov or Scintillator) Atm. Fluorescence from shower	AUGER IceTop HiRes TA
10 GeV – 10 PeV	Neutrino	Ground based "Direct" Detection	Water Cherenkov of interaction secondaries	IceCube ANITA

Ground-based Techniques for Gamma-ray Detection

Atmospheric Cherenkov Telescope Array (HESS, MAGIC, VERITAS, CTA..) Detect Cherenkov light from air-shower particles as the traverse the atmosphere.

- Ground-based detectors have TeV sensitivity
 - IACTs (pointed) excellent energy and angle resolution
 - HAWC has 24-hour >1/2 sky coverage

Wide-field/Continuous Operation TeV Sensitivity

Erice Summer School 2022 - J Goodman

Gamma-Ray Detectors

Space-based detectors - continuous full-sky coverage in GeV

HAWC LHAASO

VERITAS HESS MAGIC

- Deep surveys discovering new objects and object classes
- Extended objects
- Diffuse emission
- High energies
- Transients
- Dark matter
- LIV
- Cosmic rays

What can you do with a wide-field high-duty-cycle detector?

Extensive Air Shower Development

Gamma-ray Energy Loss Mechanisms

lengths. (Review of Particle Properties, April 1980 edition).

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation

At High Energies Pair Production and **Bremsstrahlung Dominates EM Interactions**

Energy very quickly and showers become photon rich.

Electromagnetic Air Shower

Mean energy per particle or photon

The Internet of the State of th

Electromagnetic Showers in the Atmosphere

- If EM particle such as photon or electron initiates shower in atmosphere
 - After distance n R.L.(X₀), the number of (photons + electrons + positrons) is 2^{n} and their average energy is $E_0/2^n$ (pair production length is 9/7 X_0)
 - On average, the shower consists of 2/3 positrons and electrons 1/3 photons Longitudinal development reaches maximum at depth

 - Below E_c ionization dominates and electrons stop producing photons via Bremsstrahlung

– Where $E_c \sim 80$ MeV in air $X_{max} = \frac{\ln(E/E_c)}{\ln 2}$ in radiation lengths

Gamma Ray 100 TeV

J. Oehlschläger and R. Engel, Institut für Kernphysik, Forschungszentrum Karlsruhe. 19

hadrons muons electrs neutrs

Gamma 10¹⁴ eV

Gamma Ray 100 TeV

hadrons muons electrs neutrs

Gamma 10¹⁴ eV

EM Shower

- In general showers max out deeper in the atmosphere due to longer hadronic interaction length X_{had} ~ 90 g/cm²
- Typically modeled numerically Corsika
- Hadronic showers are typically muon-rich with both penetrating muon component and soft EM component reaching ground level
- Lateral development is characterized by Molière unit equal to approximately $0.2X_0$, about 100 m at sea level.
- Hadronic showers are broader than γ

Hadronic Showers

Lateral shower profile:

- The lateral shower profile is dominated by two processes: - multiple Coulomb scattering
 - relatively long free path length of low energy photons
- It is characterized by the so-called Molière radius p_M

$$\rho_M = \frac{21 \text{MeV}}{E_C} X_0 \approx 7 \frac{A}{Z} \left[\frac{g}{cm^2} \right]$$

About 95% of the shower energy are contained within a cylinder with radius $r = 2 \rho_M$

in general well collimated !

 $\rho_{\rm M} \approx 100$ m at sea level

Example: $E_n = 100 \text{ GeV}$ in lead glass $E_1 = 11.8 \text{ MeV} \rightarrow t_{max} \approx 13, t_{95\%} \approx 23$ $X_0 \approx 2 \text{ cm}, R_0 = 1.8 X_0 \approx 3.6 \text{ cm}$

Hadron Induced Air Showers

- When a cosmic ray enters the atmosphere it likely interacts with one of the protons or neutrons in either a Nitrogen or Oxygen atom
 - If it's a proton primary it typically has one strong interaction with one nucleon
 - If it's a nucleus incoming it typically has has one strong interaction with one nucleon and breaks up the primary into N particles
- The atmosphere is ~an exponential with scale height 7-8km
 - Total mass at sea level 1030 gm/cm²
 - Proton interaction length 80 gm/cm²
 - Pion interaction length 120 gm/cm²

 - Pions have more chance to decay higher up due to thinner atmosphere Pi zero's decay immediately into two photons

Nuclear - Electromagnetic (Hadronic) Air Showers

Depth of atmosphere, 10 000 kg m⁻²

This is a proton- proton collision seen in the center of mass

For air showers we are in the lab frame and everything goes forward

Radiation from incoming partons Primary hard scatter Radiation from outgoing partons Multiple Inter. / Underlying event

2

Gamma vs Hadronic Air Showers

Hadronic and e.m. showers

- Electromagnetic showers develop more regularly, with less fluctuations.
- In the 300 GeV shower one can see jets of secondaries.
- At higher energies they are more strongly forward boosted.
- The difference in structure can be used for particle identification.

Erizetisler Astrophysics 2022-9J2608dman

Mostly Pions Produced

About 90% pions Equal numbers of $\pi^+ \pi^- \pi^0$

Charged Pions can either decay or interact

Mass 140 MeV $T = 2.6 \times 10^{-8} \text{sec}$ at 14 GeV ct=800m

Mass 135 MeV $T = 8x10^{-17}sec$ at 14 GeV ct=2µm

Proton - 100 TeV

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Proton - 100 TeV

hadrons muons electrs neutrs

 Δz [m] 1000 800 600 400 200 0 -1200 -1000 -600 -200 -800 -400

J.Oehlschlaeger, R.Engel, FZKarlsruhe

16774

Proton 10¹⁴ eV

Erice Summer School - J. Goodman 2022

Proton - 100 TeV

hadrons muons electrs neutrs

Gamma 10¹⁴ eV

hadrons muons electrs neutrs

Proton 10¹⁴ eV

Erice Summer School - J. Goodman 2022
hadrons muons electrs neutrs

J.Oehlschlaeger, R.Engel, FZKarlsruhe

J.Oehlschlaeger, R.Engel, FZKarlsruhe

J.Oehlschlaeger, R.Engel, FZKarlsruhe

Examples

• For 2 TeV gamma ray in the atmosphere $- Ln (2x10^{6} MeV/80 MeV)/Ln(2) = 14.6 r.l.$

- r.l. in air is 37gm/cm²
- Cascade max is at 540gm/cm²

The Atmosphere

- The atmosphere is about 80%N₂ and 20%O₂
- Gas law gives us
- Isothermal atmosphere

$$P = P_0 e^{-h/h_0}$$

- Where $h_0 = 7$ km, $P_0 = 101$ kPa, and $X_0 = 1000$ g/cm².
- So X=540 -> $\ln (P_0/P) = -h/h_0$
- h_{max} ~ 4.7km a.s.l. (a little above HAWC)
 - HAWC measures more than e⁺e⁻
 - Because r.I. in water is 37gm/cm² photons convert ~1'

$P = \frac{\rho R T}{M_0}$

Depth of Shower Maximum

44

Physics models and LHC data

Air shower development depends mostly on the forward region that is not well measured in collider experiments.

Air Shower Detectors

- Basically five types of detectors some are used in combination
 - Scintillator Arrays
 - Fluorescence Detectors (FDs)
 - Resistive Plate Carpets
 - Water Cherenkov Detectors
 - Imaging Atmosphere Cherenkov Detectors (IACTs)
- Night Sky Detectors IACTs, FDs
 - 10-15% duty factor
 - IACTs Integrate shower good for energy
 - FDs see shower profile good for energy and composition
- Surface detectors sample showers at one depth but operate 24/7

Measurement of Cherenkov light with telescopes

Measurement of particles with tracking detectors (with drift chambers or streamer or Geiger tubes)

Sampling the Shower

Jordan Goodman

EAS Detectors - Scintillators

Erice Summer School 2022 - J Goodman

Energy Range 3TeV - 10 PeV

EAS Detectors - Scintillators KASCADE Grande (Karlsruhe / Germany)

Energy Range 100 TeV - 200 PeV

EAS γ - Tibet

Jordan Goodman

University of Maryland Erice Summer School - J. Goodman 2022

IceTop

Jordan Goodman

University of Maryland Erice Summer School - J. Goodman 2022

Jordan Goodman

ARGO

University of Maryland Erice Summer School - J. Goodman 2022

Limited Streamer Tubes

Jordan Goodman

Detector carpet: 10 x 13 Clusters, 1560 RPC Sampling ring: 6 x 4 Clusters, 288 RPC Total: 154 Clusters, 1848 RPC For a complete coverage another 84 Clusters (1008 RPC) are needed

Jordan Goodman

University of Maryland Erice Summer School - J. Goodman 2022

ARGO Design

RPC

ARGO Events

Jordan Goodman

ARGO will be a very capable detector when completed in several years!

When a charged particle moves through transparent media faster

Erice Summer School 2022 - J Goodman

Cherenkov Radiation

Cherenkov Radiation

Jordan Goodman

Jordan Goodman

Auger

Erice Summer School 2022 - J Goodman

Milagro Gamma Ray Observatory 2350m altitude near Los Alamos, NM

STIMULATION CONTRACTION OF CONTRACTION OF CONTRACT, CONT

A. Abdo, B. Allen, D. Berley, T. DeYoung, B.L. Dingus, R.W. Ellsworth, M.M. Gonzalez, J.A. Goodman, C.M. Hoffman, P. Huentemeyer, B. Kolterman, J.T. Linnemann, J.E. McEnery, New York University A.I. Mincer, P. Nemethy, J. Pretz, J.M. Ryan, P.M. Saz Parkinson, A. Shoup, G. Sinnis, A.J. Smith, D.A. Williams, V. Vasileiou, G.B. Yodh

A MARINE MARINE

MARYLAN

MICHIGAN STATE UNIVERSITY

Los Alamos

- In the mountains above Los Alamos at 2650m
- In an existing pond
 - 60m x 80m x 8m
 - 175 outriggers
 - 20,000 m²
- Operated from 2000- 2008
- 1st wide-field TeV Observatory

Energy Range (3 Tev - 40 TeV)

Good Hadron Rejection

J. Goodman — Particle Astrophysics – Univ. of Maryland

Spring 2016

Erice Summer School 2022 - J Goodman

Shower Curvature

Angle $\sim 1^{\circ}$ -1.5°

Jordan Goodman

Gamma Shower 2 TeV (movies by Miguel Morales)

Development of a 2TeV Gamma Ray Shower from first interaction to the Milagro Detector

Viewed from below the shower front -Color coded by Particle Type

This movie views a CORSIKA simulation of a gamma ray initiated shower. The purple grid is 20m per square and is moving at the speed of light in vacuum. The height of the shower above sea level is shown at the bottom of the screen.

Yeirow - muons

- Green pions and kaons
- Purple protons and neutrons
- Red other, mostly nuclear tragments

70

Development of a 2TeV Proton Shower from first interaction to the Milagro Detector

Viewed from below the shower front -Color coded by Particle Type

This movie views a CORSIKA simulation of a proton initiated shower. The purple grid is 20m per square and is moving at the speed of light in vacuum. The height of the shower above sea level is shown at the bottom of the screen.

Blu

Erice Summer School 2022 - J Goodman

Proton Shower 2 TeV (movies by Miguel Morales)

Yellow - muons Green - pions and kaons Purple protons and neutrons

Irple

Background Rejection in Milagro

72

Milagro TeV Sources

Milagro to HAWC

Pico de Orizaba "Citlaltepetl" 5610m (18,400 ft)

HAWC

Sierra Negra "Tliltepetl" 4582m (15,000 ft)

HAWC Tanks air shower Che ia Carterio diversità

Water Cherenkov Detectors

Light-blocking dome Purified water

Watertight liner Photosensors Steel water tank

HAWC

81

300th WCD tank constructe ~3,900 tanker truck trips

J. Goodman - University of Maryland - HAWC

83

HAWC-30: Engineering Test of full detector HAWC-111: Operations Begins: August 2013 (283 days) HAWC-250: November, 2014 (~150Days) HAWC-300: March 2015 – Present : >95% uptime

HAWC Inauguration, HAWC-300: March, 2015

HAWC-250

Outriggers in operation since August 2018

300th WCD tank constructe ~3,900 tanker truck trips

Erice Summer School 2022 - J Goodman

J Goodman — Particle Astrophysics – Univ. of Maryland

HAWC Electronics

Spring 2022

- We read in every PMT hit all the time – Raw data rate - 500MB/s -10 VME Backplanes
- Trigger in Software Trigger rate requiring ~30 hits in 300ns is ~25kHz
- Process in near real time
- Rate to disk ~24MB/s -> ~2TB/day (everyday)
- Data is moved by portable disk arrays to UNAM
 - About once a week it's driven to Mexico City (during Covid used Uber)
 - Moved over Internet II to UMD
- Raw Data plus processed data is stored in Mexico and Maryland
 - About a petabyte a year
 - Currently we have about 7.5 PB of storage at UMD

HAWC Data

J. Goodman — Particle Astrophysics – Univ. of Maryland

Spring 2022

Angle Reconstruction

- Charged particles more abundant than γ-rays

The cosmic ray background

Gamma Hadron Separation (MC)

Gammas

Protons

Erice Sumn

Energy deposited away from core

Shower reconstruction

- Measure: time and light level in each PMT.
- Reference: Crab paper, ApJ 843 (2017), 39.

Reconstruct: direction, location, energy, and background rejection.

Erice Summer School - J. Goodman 2022

Source search and characterization

- Likelihood framework use n maps to test the presence of sources then characterize them.
- Reference: Crab paper, ApJ 843 (2017), 39.

 α [°] Bin 9 21 PSF: <0.2° 84 83 α[°]

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.512.0

data map

Events sorted by "size" in n bins (with characteristic Point Spread Function, S/N ratio, energy), make n maps.

Erice Summer School - J. Goodman 2022

Two Energy Analysis

Erice Summer School 2022 - J Goodman

The Crab Spectrum

Erice Summer School - J. Goodman 2022

Highest Energies ~100 TeV

HAWC and H.E.S.S. Observable sky

HAWC is blue HESS is gray

Jordan Goodman - January 2022

HAWC and H.E.S.S. Galactic plane

HESS standard analysis > 1TeV

HAWC and H.E.S.S. Galactic plane

- Similar angular resolution 0.4°
- Similar background method \bullet
- Similar map making process

HESS new analysis > 1TeV

H.E.S.S. detection of HAWC sources

Original Comparison

$$0.07.5$$
 10.0 12.5 15.0
 \sqrt{TS}

Jordan Goodman - January 2022

Galactic latitude

H.E.S.S. detection of HAWC sources

Significance (σ) Jordan Goodman - January 2022

New Comparison

Large High Altitude Air Shower Observatory (LHAASO)

Erice Summer School 2022 - J Goodman

The Future

The Southern Wide-field Gamma-ray Observatory

