

Ultra-high energy cosmic rays in the multi messenger era

Antonella Castellina

INAF, Osservatorio Astrofisico di Torino INFN, Sezione di Torino, Italy

Detectors for UHECRs

Surface detectors

array of detectors at one atmospheric level

- ✓ total area chosen depending on the primary energy, and thus on the rate to be studied:
 ~10⁵ m² for the knee region (e.g. EASTOP) 3000 km² for the UHE region (e.g.Auger)
- separation between modules matching the footprint of the shower at the observation level: ~tens of m (knee region),

~ hundreds to km (UHE region)

✓ active area << total area : ~3 10⁻³ (EASTOP), ~5 10⁻⁶ (Auger)

observables

- ✓ signals (number of charged particles) in the modules : EM, muonic, hadronic components
- \checkmark time of arrival of the particles

From small arrays...

PAMIR (G.Zatsepin, 1946)

- √ 3860 m asl, USSR
- array of Geiger-Muller counters + ionization and cloud chambers
- \checkmark energies up to the knee

- AGASSIZ (B.Rossi, MIT, 1956)
 - ✓ array of 15 plastic scintillators (1 m² each) with PMTs
 - \checkmark energies up and above the knee

✓ density sampling ->core
 ✓ fast timing -> arrival direction

... to giant experiments

3 km

Volcano Ranch (New Mexico, 1957-63)

✓ array of 19 plastic scintillators (3.3 m² each)
 ~8.1 km²

\checkmark first detection of an event with E ~ 10²⁰ eV

Haverah Park (UK, 1967-87)

- ✓ array of 200 water Cherenkov tanks over an area ~ 12 km²
- ✓ mutual distances from 150 m to 2 km :
 4 events with E ~ 10²⁰ eV

... to giant experiments

Yakutsk (Siberia, 1969-95)

✓ surface and undergound detectors over an area ~ 18 km²
 ✓ mutual distance from 100 to 500 m

SUGAR (Australia, 1968-79)

 ✓ array of 56 pairs of scintillators buried 1.7 m underground over an area ~ 60 km²
 ✓ mutual distances ~1.6 km, too big

AGASA (Japan, 1990-2004)

 ✓ array of 111 scintillator stations (2.2 m² each) + 27 muon detectors
 ✓ over an area ~ 100 km²
 ✓ mutual distances ~1 km
 ✓ ~10 events with E > 10²⁰ eV

- mirrors collect the total light emitted along the shower track visible in the field of view and focus it onto a multi-pixel (multi-PMT) camera
- several mirrors can be combined for a larger FOV
 - \checkmark fast and sensitive electronics
 - ✓ clear, moonless nights: ~10% duty cycle
 - mandatory monitoring of atmospheric conditions: Rayleigh (molecular) and Mie (aerosol) scattering

Shower Track Aperture Camera Corrector Ring Segmented Mirror

- three contributions
 - the particles of an EAS excite nitrogen molecules in the atmosphere, which subsequently radiate
 UV fluorescence light isotropically
 - charged shower particles travel faster than the speed of light in air, leading to the emission of direct Cherenkov light.
 - ✓ due to the charged particles scattering, *scattered Cherenkov light* is also present.

emitted
recorded at the telescope

$$N_{\gamma}^{fl}(X_{i}) = Y_{i}^{fl}(dE/dX_{i})\Delta X_{i} \longrightarrow (y_{i}^{fl}) = \frac{A\epsilon T_{i}}{4\pi r_{i}^{2}} N_{\gamma}^{fl}$$

$$N_{\gamma}^{Ch}(X_{i}) = Y_{i}^{Ch}N_{e}(X_{i}) \longrightarrow (y_{i}^{Ch}) = \frac{A\epsilon T_{i}}{4\pi r_{i}^{2}} f_{Ch}(\beta_{i})N_{\gamma}^{Ch}(X_{i}) \qquad (dE/dX)_{i} = \alpha_{i}N_{e}(X_{j})$$

$$N_{\gamma}^{Ch}(X_{i}) = Y_{i}^{Ch}N_{e}(X_{j}) \longrightarrow (y_{i}^{Ch,sc}) = \frac{A\epsilon T_{i}}{4\pi r_{i}^{2}} f_{sc}(\beta_{i})N_{\gamma}^{Ch,sc}(X_{i})$$

$$y_{i} = y_{i}^{fl} + y_{i}^{Ch} + y_{i}^{Ch,sc} \text{ total light flux at the telescope}$$

$$\downarrow$$

$$(dE/dX) \text{ in the field of view}$$

$$f_{GH}(X) = \left(\frac{dE}{dX}\right)_{max} \left(\frac{X - X_{0}}{X_{max} - X_{0}}\right)^{\frac{(Xmax - X_{0})}{\lambda}} exp\left(\frac{(X_{max} - X_{0})}{\lambda}\right)$$

$$E_{em} = \int_{\alpha}^{\infty} dX f_{GH}(X)$$

Atmospheric monitoring

Molecular attenuation:

size of molecules << distance between molecules << light wavelength
0.1 nm << 5 nm << 300-400 nm

elastic (Rayleigh) or inelastic (Raman) Very little dependence on molecular density variations

Aerosols attenuation:

size of spheres > light wavelength 1000nm > 300-400 nm

> Most variable term contributing to transmission Need for extensive monitoring with different instrumentation

Clouds

false profiles (holes/bumps) can be induced by absorption of light in clouds or side-scattering of Cherenkov beam

Transmission: $T(x) = e^{-\tau}$ Optical Depth (OD): $\tau = \int_{0}^{X} \alpha(r) dr = \tau_{molec} + \tau_{clouds} + \tau_{aerosol}$ Attenuation coefficient: $\alpha = \sigma * N(x)$ Attenuation Length: $\Lambda = 1/\alpha$

Smoke (landfires) dust sand (windborn)

Elastic Lidars

Category	Variable	Frequency	Instrument(s)
State	At ground: pressure, temp., wind, humidity	5 min	Weather stations
	Profile: pressure, temp., humidity	3 h	GDAS ^a
Aerosols	Vert. optical depth (z)	Hourly	CLF, XLF + FD
	Phase function	Hourly	2 APF units
	Ångström coefficient	Hourly	FRAM (HAM)
Clouds	Presence in FD pixels	15 min	4 cloud cameras
	Behind FD sites	15 min	4 lidar stations
	Along select tracks	Avg. 1/night	FRAM, lidar
	Above CLF/XLF	Hourly	CLF, XLF + FD

The old ones...

Cornell (USA, 1964-67)

✓ triangle of stations at 11, 16, 12 km

✓ in 1965, imaging system with mosaic segments

✓ too bad atmosphere

✓ too small lenses

INS-Tokyo (Japan, 1968)

- Fresnel lens 1.6 m diameter + 27 PMTs in the focal plane
- ✓ first fluorescence light from EAS> 5 10¹⁸ eV
- ✓ technical problem with lenses

Fly's Eye (Utah, 1981-93)

- ✓ first array: 67 modules each with a spherical mirror (1.6 m diameter) + 12-14 PMTs, 5x5⁰ sky region
- second array: 36 modules at 3.4 km from the other

...more recent ones...

HiRes (Utah, 1994-2004)

- ✓ HR-I: 21 mirrors, 360^o in azimuth, 3-17^o in elevation
- ✓ HR-II: 42 mirrors, 360^o in azimuth, 3-33^o in elevation
- \checkmark can see showers up to ~ 40 km

The hybrid approach: Pierre Auger Observatory

<u>1661 Water-Cherenkov stations:</u> SD1500 : 1600, 1.5 km grid; SD750: 61, 750 m grid

<u>Engineering arrays:</u> 153 Radio antennas (AERA); 24 Underground Muon Detectors (UMD)

The hybrid approach: Pierre Auger Observatory

<u>1661 Water-Cherenkov stations:</u> SD1500 : 1600, 1.5 km grid; SD750: 61, 750 m grid

<u>Engineering arrays:</u> 153 Radio antennas (AERA); 24 Underground Muon Detectors (UMD)

The hybrid approach: Telescope Array

<u>507 plastic scintillator detectors:</u> 1.2 km grid, 3000 km²

<u>3 Fluorescence Sites:</u> 38 telescopes, 3-31^o FoV (MD: refurbished FD from HiRes, LR,BR: new FDs]

Surface detectors

 $1.2 \text{ m deep} \longrightarrow 3.3 \text{ X}_0$

Gamma flux ~ 1 order of magnitude higher than e^{\pm} flux

Muon signal enhanced in proportion to water thickness: vertical muons deposit ~240 MeV

Volume detector: $A = \pi R^2 cos\theta + 2Rhsin\theta$ = 10.2 $cos\theta + 4.3 sin\theta m^2$

Good sensitivity to horizontal showers (neutrino signature)

1661 stations, separation 1500 m (750m in Infill)

5 cm deep -> 0.12 X₀

More sensitive to the flux of e±

Thin detector: μ energy deposit ~10 MeV, negligible contribution

$$A = 3.0 \cos\theta \ m^2$$

507 stations, separation 1200 m

24 FD in 4 station+3 high elevation mirrors in HEAT

10 m² mirror 440-pixel camera UV filter Corrector lenses

48 FD in 3 stations

Mirrors:

14 5.2 m² mirrors in site Middle Drum
12 6.8 m² mirrors in sites Black Rock Mesa
and Long Ridge
256 pixels/camera
+ 10 high elevation mirrors in TALE

Radio antennas - AERA at Auger

E (30-80 *MHz*) =15.8*M*eV@10¹⁸ eV

inclined air showers can be detected by a sparse antenna grid (> 1 km mutual distance)

Direct muon detection

61 muon detectors shielded by 2.3 m of soil Each detector: 30 m² ⁻ 23.4 km² instrumented 750 m spacing

Direct measure of muons

Full efficiency study of the lower energy region (transition)

SD-750m	SD-433m
23.5 km ²	1.9 km ²
61 WCDs	19 WCDs
E _{thr} 0.1 EeV	E _{thr} 0.03 EeV

...very unusual labs !

The Pierre Auger Observatory

A multi-component hybrid Observatory; study of UHECRs >10¹⁷ eV.

Energy calibration

Reconstructing the signals in SD

At station level:

- Start time : depends on resolution of the GPS time-tagging system (10 ns) + FADC sampling accuracy (~7 ns) + fluctuation of the arrival time of the first particles (due to thickness of the shower front, density of particles therein, cross-section of the station)
- Size of the signal (VEM) $\sigma_S^2 = f_S^2(\theta) \times S$

At event level:

Signal [VEM]

From the timing: geometry of the shower **(arrival direction, core position)** From the signals: lateral distribution

The "invisible energy": the Auger data driven approach

Energy calibration (Auger)

Energy calibration (TA)

Auger Public Data Release

The Pierre Auger 2021 Open Data is the public release of 10% of the Pierre Auger Observatory cosmic-ray data presented at the <u>36th</u> <u>International Cosmic Ray Conference</u> held in 2019 in Madison, USA, following the <u>Auger Collaboration Open Data Policy</u>. The release also includes 100% of weather and space-weather data collected until 31 December 2020.

This website hosts the datasets for download. A brief overview of the <u>Pierre Auger Observatory</u> and of the <u>Auger Open Data</u> is set out below. An online event display to explore the released cosmic-ray events, and example analysis codes are provided. An outreach section dedicated to the general public is also available.

Example : an Auger SD event

Example : an Auger multi-hybrid (4 FD) event

Example 4: an Auger multi-hybrid event

Example 4: an Auger multi-hybrid event

UHECRs (E>10¹⁷ eV) connections

The energy spectrum

$$\Phi(E) = \frac{N(E, E + \Delta E)}{t\Omega A \Delta E} \equiv \frac{N(E, E + \Delta E)}{\epsilon \Delta E}$$

- ♦ N=number of incident particles between E and ΔE
- t= measurement time
- ♦ A= area of detection
- Ω =solid angle
- $\star \epsilon = exposure$

The exposure

Surface detector

- ✓ SD fully efficiency above 3 EeV
- ✓ Hexagonal grid of SD exploited for geometrical evaluation of the aperture: detector cell area a_{cell}~4.6 km² sr for 9<60⁰ Ncell(t) monitored every second
- ✓ A=Ncell(t) × acell
- $\checkmark \epsilon$ = array aperture x number of live seconds

$$\epsilon = t \int_0^{2\pi} \int_{\cos\theta_{min}}^1 \cos\theta A \, d\cos\theta = A \, t\pi (1 - \cos^2\theta_{min})$$

e.g. 01/01/2004 - 31/08/2018 (60,400<u>+</u>1,810) km² sr yr

Hybrid detector

✓ Time variations of the detection and energy dependence must be carefully taken into account

 \checkmark Requires the knowledge on the detector on-time

Time dependent detector simulation used

$$\epsilon(E) = \int_T \int_\Omega \int_{S_{gen}} \epsilon(E, t, \theta, \phi, x, y) cos\theta dS d\Omega dt = \int_T A(E, t) dt$$

The exposure

SD – from active hexagon cells

- geometrical calculation
- flat above threshold

FD - realistic MC simulations

- light from EAS
- atmospheric conditions
- detector status
- evolves with energy

contributions to tolal exposure @ 10¹⁹ eV:

SD 1500 m vertical	74.8%
SD 1500 m inclined	21.6%
SD 750 m	0.1%
hybrid	3.4%
Cherenkov	0%

Auger energy spectra

The Auger energy spectrum

V.Novotny, PoS(ICRC2021) 324

The energy spectrum

The TA energy spectrum

TA SD (2019) outside of BR / LR Obs. Period

Comparison Auger/TA

good agreement in the common declination band (-15°< δ <24.8°) within systematics up to ~30 EeV

further energy dependent rescaling $\pm 10\%$ per decade needed to restore agreement at the UHE - studies ongoing

Main differences Auger/TA

- if E_{inv} (Auger) is used in TA : $E_{TA} \times 1.07$
- if FY(Auger) is used in TA : $E_{TA} \times 0.86$
- + differences in the method of correlating the SD observable with E: constant intensity cut in Auger, look-up tables based on QGSJetII-03(proton) for TA

PAO+TA working group, ICRC2021

Comparison Auger/TA

if <u>Einv</u>(Auger) is used in TA
 E_{TA} x 1.07

if FY(Auger) is used in TA
 E_{TA} x 0.86

 difference in the method to correlate the SD observable with E: constant intensity cut in Auger, look-up tables based on QGSJetII-03(proton) for TA

Comparison Auger/TA

Is there a declination dependence?

declination dependence of the spectrum in the highest energy region:

- not seen in Auger (except for differences due to the dipolar anisotropy pattern above 8 EeV)
- seen in TA at ~4.3o level, currently not explained by systematic uncertainties:
 - → $log_{10}E_{break}$ (lower δ) = 19.64+0.04
 - → $log_{10}E_{break}$ (higher δ) = 19.84+0.02

1- Setting the stage

- sources
- acceleration
- propagation from sources to Earth
- extensive air showers

2- Techniques

- surface, fluorescence, radio detectors
- from old to modern Observatories
- the experimental observables
- the energy spectrum

3- What have we learnt?

- anisotropy of UHECRs
- mass composition
- multi-messengers
- the future of the field

Backup slides

Calibration of detectors response

SD Calibration

2500 Hz atmospheric muons

Their flux is collected in each WCD and compared to the one obtained in a reference tank equipped with a muon hodoscope $Q_{peak} \sim 1.03 VEM/PMT$

Q_{VEM}= n_{phe} x PMT gain

 $\ensuremath{\mathsf{Q}_{\mathsf{VEM}}}$ checked on light produced by a decay electron from a stopped muon

FD Calibration

· Absolute: End to End Calibration

The **Drum** device installed at the aperture uniformly illuminates the camera with light from a calibrated source (1/month)

Alternative techniques for cross checks
 Scattered light from laser beam

Statistical

All agreed within 10% for the EA

FDs	Overall	FDs with same
	uncertainty [%]	$\operatorname{components}$
Coihueco 2/3	1.5	CO2/3
Coihueco 4/5	1.5	CO1,4-6, LA, HEAT
Los Morados $4/5$	1.5	LM
Los Leones 3/4	2.2	LL1-6

The angular resolution

It depends on

- the multiplicity of the triggering stations
- the precision on the arrival times
- the model to fit the shower front

Better than 1° for ≥ 6 stations

The "Constant Intensity Cut"

Energy resolution

ð	FD energy resolution	
oher	Aerosol optical depth	1.2% - 3.8%
lsou	Horiz. uniform. of aerosols	1.6% – 5%
atm	Molecular atmosphere	1%
5	Nightly relative calib.	1.3%
or/ ucti	Time drift of FD energies	2.5%
stru	Mismatch between telescopes	3.5%
det Con	Stat. error from geom. and GH fit	4.6% - 2.8%
Le L	Extrapolation of profile	2.2%
ible rgy	$E_{\rm inv}$ shower-to-shower fluc.	1.1% - 0.6%
nvisi enei	$E_{\rm inv}$ mass uncertainty	2.4% - 0.3%
	TOTAL	7.6% - 8.6%

Systematic uncertainties on the energy scale

Absolute fluorescence yield	3.4%
Fluores. spectrum and quenching param.	1.1%
Sub total (Fluorescence Yield)	3.6%
Aerosol optical depth	3% ÷ 6%
Aerosol phase function	1%
Wavelength dependence of aerosol scattering	0.5%
Atmospheric density profile	1%
Sub total (Atmosphere)	3.4% ÷ 6.2%
Absolute FD calibration	9%
Nightly relative calibration	2%
Optical efficiency	3.5%
Sub total (FD calibration)	9.9%
Folding with point spread function	5%
Multiple scattering model	1%
Simulation bias	2%
Constraints in the Gaisser-Hillas fit	3.5% ÷ 1%
Sub total (FD profile rec.)	6.5% ÷ 5.6%
Invisible energy	3% ÷ 1.5%
Statistical error of the SD calib. fit	0.7% ÷ 1.8%
Stability of the energy scale	5%
TOTAL	14%

Impact of the Fluorescence Yield Model ³⁶

- Auger: AirFly result (Astropart. Phys. 42 90 2013, 3.6% uncertainty)
- TA: Kakimoto et al. (*NIM-A*, 372 527 1996, 11% uncertainty) + FLASH spectrum
- 14% difference

Example : an Auger vertical SD event

Example : an Auger inclined SD event

