Gamma-ray astronomy with Imaging Air Cherenkov Telescopes

. Lecture 3

Christian Stegmann International School of Cosmic Ray Astrophysics Erice, July, 2022

The first VHE detection of a nova: The H.E.S.S. detection of RS Ophiuchi Seen by MAGIC as well

Time-resolve hadronic particle acceleration in the recurrent nova RS Oph

Image Credits: DESY/H.E.S.S., Science Communication Lab

Novae Classification

- White dwarf + main sequence (MS) companion
- Short period (~days), slow recurrence (10⁴-10⁵ yrs)
- Low-density, fast wind from MS companion

- White dwarf + red giant (RG) companion
- Long period (~1 year), fast recurrence (~100 yrs)
- High-density, slow wind from RG

Novae phenomenology Shocks

- internal and external shocks are expected
- Observational evidences:
 - GeV emission from a dozens of novae $L_{GeV} = 10^{34}$ -10³⁶ erg/s
 - Shocks seem energetically important

The H.E.S.S. Telescope System

RS Ophiuchi VHE Observations

- Symbiotic nova d ~ 1.4 (2.45) kpc
- Orbital period ~450 days, $m_v < 9$
- Post-2006: asymmetric expansion at 5.5 days from infrared interferometric observations
- Outburst on 8th 9th August 2021
 - 6σ in Fermi LAT data
 - $v_{ej} \gtrsim 2600$ km/s
 - m_v ~ 5.0

DESY/H.E.S.S. Science Communications Lab

RS Ophiuchi VHE Observations

+ > 40 ATel related to follow-up observations

RS Ophiuchi VHE Observations

9 August 18:17 UT

-6°00'

Declination (J2000) .00°.2 .000

30'

17^h54^m

Optical alert 8 August 21:55 UT

		- 1	Night 09 Aug. 2021 10 Aug. 2021	T _{obs} (UTC) 18:17:40 17:53:46	Livetime (hours) 3.2 3.7 (2.8)	Significance (σ) 5.8 (6.4) 9.0 (7.1)
			11 Aug. 2021	17:44:08	3.7	9.8 (9.6)
115			12 Aug. 2021	18:17:12	2.3	13.6
			<u>15 Aug. 2021</u> 25 Aug. – 07 Sep. 2021	17:44:43	14.6 (13.4)	3.3 (2.3)
			0 1	,		
	Moon	♦ H.E.S.S. Observat 25 August	ions		H.E.S.S. Obse 7 September	rvations
H.E.\$.S. Observations 13 August						7
>6σ every night				3.3σ		
A RS Oph: $T_0 + (1-5)$ days 15- 10- 5- 0- PSF	Declination (J2000)	B RS Oph: PSF	T ₀ + (2-4) weeks	3 - 0 - -3 -		
H.E.S.S.	30' -		H.E.S.	S.		
¹ 54 ^m 52 ^m 50 ^m 48 ^m	17 ^h 5	54 ^m 52 ^m	50 ^m 48 ^m			
Right Ascension (J2000)		Right A	scension (J2000)			

RS Ophiuchi GeV Observations

Fit with a log-parabola function LAT + HESS (CT5 + CT1-4)

RS Ophiuchi Light curve

RS Ophiuchi

Spectral evolution

- H.E.S.S. spectrum becomes harder and extends to very high energies E_{max} ~ 1 TeV
- Maximum attainable particle energy depends on:
 - Confinement for protons:

$$E_{\max} = 1.5|Z| \left(\frac{\xi_{esc}}{0.01}\right) \left(\frac{\dot{M}/v_{wind}}{10^{11} \text{kgm}^{-1}}\right)^{1/2} \left(\frac{u_{sh}}{5000 \text{kms}^{-1}}\right) \text{TeV}$$

• Cooling for electrons:

$$E_{\rm max} = 10 \left(\frac{u_{\rm sh}}{5000 \rm km/s} \right) \left(\frac{R_{\rm sh}}{\rm au} \right) \left(\frac{B_{\star}}{1 \rm G} \right) \rm TeV$$

RS Ophiuchi Spectral evolution

- H.E.S.S. spectrum becomes harder and extends to very high energies Emax ~ 1 TeV
- Maximum attainable particle energy depends on:
 - Confinement for protons:

$$E_{\max} = 1.5|Z| \left(\frac{\xi_{esc}}{0.01}\right) \left(\frac{M/v_{wind}}{10^{11} \text{kgm}^{-1}}\right)^{1/2} \left(\frac{u_{sh}}{5000 \text{kms}^{-1}}\right) \text{TeV}$$

• Cooling for electrons:

$$E_{\rm max} = 10 \left(\frac{u_{\rm sh}}{5000 {\rm km/s}}\right) \left(\frac{R_{\rm sh}}{{\rm au}}\right) \left(\frac{B_{\star}}{1{\rm G}}\right) {\rm TeV}$$

Page 12

RS Ophiuchi Inverse Compton

- Accelerate electrons at external shock, IC scatter in time-dependent radiation field of the nova
- In principle works, but
 - Fraction of energy of shock transferred to nonthermal emission >1% => inconsistent with DSA theory
 - Acceleration close to Bohm limit, requiring strong self-generated B-fields, requiring protons => p-p
 - 1st night very hard to explain

RS Ophiuchi

Proton-proton

- Accelerate protons at external shock, proton-proton interaction with RG wind particles
- Hadronic model strongly favoured
 - Fraction of energy of shock transferred to nonthermal protons ~10% => consistent with DSA
 - Emax consistent with DSA, at theoretical limit!
 - Drop in LAT flux due to decreasing wind density
 - Increase in TeV flux consistent with build-up of high-energy proton population
 - Consistent with previous findings of other nova gamma detections

RS Ophiuchi Modeling

- Dense medium => external shock (~evolution stages like a mini-SNR)
- Timescale evolution is ruled by $M_{ej}^{3/2} v_{wind} / E^{1/2} M_{wind} <=$ ratio ~10⁻⁵

RS Oph	SNR
$M_{\rm wind} = 3 \times 10^{-6} M_{\odot} \rm yr^{-1}$	$M_{\rm wind} = 10^{-5} M_{\odot} {\rm yr}^{-1}$
$v_{\rm wind} = (10 - 30) \rm km/s$	$v_{\rm wind} = 10 \rm km/s$
$E = 10^{43}$ erg	$E = 10^{51} {\rm erg}$
$M_{\rm ej} = 10^{-6} M_{\odot}$	$M_{\rm ej} = 10 M_{\odot}$

First ~5 days => ejecta dominated v~(2-4)x10³ km/s

Relevance of H.E.S.S. & MAGIC detection

- This discovery is not just "yet another new source class", but
 - We witnessed CR acceleration and gamma-ray production in real-time outside the solar system for 1st time => "movies" instead of "snapshots"
 - Were able to study DSA in ~controlled environment in time-dependent fashion
 - DSA at (predicted) theoretical limit works
 - Proofs particle acceleration in dense stellar winds is highly effective => relevance for PeV CR acceleration?!

Comparison with previous Novae

- Go back to archive and look into previous follow-ups, adapt follow-up strategy
- Longer duration, more observation time needed for CTA

From novae to supernovae

More energy + faster shocks + dense & structued (?) CSM

Recurrent novae

Interaction-powered SNe

Recurrent nova RS Ophiuchi

Time Domain Astronomy

- Increasingly important field to study the dynamics of astrophysical processes on short time scales
 - Flares of Active Galactic Nuclei
 - Gravitational Wave Events
 - Gamma-Ray Bursts (GRBs)
- Novae

Data Quality

- Morphologies
 - spacial
 - energy-dependent
- Periodicities/Variability
 - from ms to years
 - Energy-coverage

٠

- over several decades
- Source positions and extensions
 - on the arc-second level

Azwidth

TeV GAMMA RAYS FROM CRAB NEBULA

How to do better?

- More events
 - more photons = better spectra, images, fainter sources
 - \rightarrow larger collection area for gamma-rays
- Better events
 - more precise measurements of atmospheric cascades and hence primary gammas
 - \rightarrow improved angular resolution
 - \rightarrow improved background rejection power
- \rightarrow More telescopes!

A project with more than 1200 scientists, over 70 insitutes around the world

The ideal array

The affordable compromise

W. Hofmann

The affordable compromise

Low energy section Energy threshold of some 10 GeV Medium energy section mCrab sensitivity in the 100 GeV – 10 TeV domain High energy section 10 km² area at multi-TeV energies

Science drivers for CTA

• Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids
- Theme 3: Physics Frontiers beyond the SM
 - What is the nature of Dark Matter? How it is distributed?
 - Is the speed of light a constant for high energy particles?
 - Do axion-like particles exist?

Survey Sensitivity

mCrab Sensitivity

Galactic PeVatrons

Galactic PeVatrons

Acceleration mechanisms

LMC Survey

- The Large Magellanic Cloud
 - 10% of MW star formation (2% vol.)
 - hosts extreme accelertors (HESS Coll. 2015, Science 347, 406)
 - Approximately face on and well known distance of 50kpc
- Deep CTA observations will reveal source population and diffuse emission

Transients with CTA

Gamma Ray Bursts (E>30 GeV)

From Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array (Astroparticle Physics special issue article) Susumu Inoue et al., arXiv:1301.3014

Status CTA

CTA Sites

Array layouts

- La Palma: 4 LST, 9 MST
- Chile: 14 MST, 37 SST

May 2022: Foundation stone ceremony of the CTA SDMC

A sign of open and international science just a few days after the launch of the brutal Russian attack on Ukraine

The SDMC in Zeuthen

https://bau-zeuthen.desy.de/cta_sdmc/

CTA

Chile, the southern site

Preparation of gravel base layer, which will be covered by the asphaltic "Cape seal"

Road construction machinery

Terminated base layer, ready to receive Asphalt

Preparation Km 0,0 to 2,1

View from Km 2,5 to the East

CTA – the Cherenkov Telescope Array

- A huge improvement in all aspects of performance
 - A factor ~10 in sensitivity, much wider energy coverage, much better resolution, field-of-view, full sky, .
- A user facility / proposal-driven observatory
 - With two sites with a total of >100 telescopes
- A 29 nation investment project
- Construction started

This is the future of ground-based gamma-ray astronomy with Air Cherenkov Telescopes and an important partner in multimessenger astronomy

The end