

GRAVITATIONAL WAVE ASTRONOMY

LECTURE 1: INTRODUCTION TO GRAVITATIONAL WAVES

PATRICIA SCHMIDT **ISCRA 22**

A NEW WINDOW

GRAVITATIONAL-WAVE SCIENCE

- Discover the dark side of the Universe
 - Detect and determine properties of astrophysical (and primordial?) black holes
 - Measure merger rates of compact binaries
 - Inform binary formation models
- Infer the EOS of matter at supra-nuclear densities e.g. in neutron stars
- Test GR in the strong-field, high-curvature regime
- Independently measure the expansion rate of the Universe
- Multimessenger astrophysics
- Dark energy, dark matter

OUTLINE

OUTLINE

- Lecture 1: Introduction; 4.8. @ 15.00
 - What are gravitational waves?
 - Sources of gravitational waves
 - Gravitational-wave detectors

Lecture 2: Data Analysis for compact binaries; 5.8. @ 11.45

- Detection: Matched filtering
- Parameter Estimation
- Modelling gravitational waves from compact binaries
- Lecture 3: Observations; 6.8. @ 9.00
 - Gravitational-wave observations
 - Future missions and prospects

Schmidt, Univ. of Birmingham

GR REMINDER

- The gravitational field is a geometric property of 4D spacetime: curvature
 - **Metric tensor** $g_{\mu\nu}$: how to measure distances and angles in a curved manifold
 - Mass/energy curve spacetime

$$G_{\mu\nu} \equiv R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi T_{\mu\nu} \qquad \text{Einster}$$

- Locally, for freely-falling observers the laws of special relativity hold (equivalence principle)
 - Freely-falling observers move along **geodesics** (shortest paths in general manifolds)
 - **Tidal effects** determine the relative acceleration between 2 freelyfalling observers

Conventions:

$$sign(\eta_{\mu\nu}) = (-1, 1, 1, 1, 1, 1)$$

$$u^{\mu}v_{\mu} = \sum_{\mu} u^{\mu}v_{\mu}$$

$$\mu \in \{0, 1, 2, 3\}$$

$$i \in \{1, 2, 3\}$$

$$G = c = 1$$

ein field equations

LINEARISED GRAVITY

- Are a fundamental prediction of General Relativity (GR): propagating oscillations of the gravitation field generated by accelerating masses
 - Transverse waves travelling at the speed of light c
- Let us consider the vacuum Einstein field equations (far away from the source of the gravitational field):

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$$

small metric perturbation $h_{\mu\nu}$, i.e.

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad ||h_{\mu\nu}|| \ll 1$$

- Compute all relevant quantities keeping only the terms linear in $h_{\mu\nu}$ (higher order terms are discarded)
- Work with the trace-reversed metric perturbation to

Linearised gravity: Far away from the source of the gravitational field, the metric $g_{\mu\nu}$ is that of flat Minkowski space with a

simplify expressions:
$$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$$

LINEARISED GRAVITY

- Make use of the gauge freedom in GR!
 - reversed metric perturbation tensor:

 $\longrightarrow \Box h_{\mu\nu} \equiv \eta_{\mu\nu} \partial^{\mu} \partial^{\nu} h_{\mu\nu} =$ flat-space d'Alembertian

Solutions to the wave equation are (superpositions of) plane waves:

$$\bar{h}_{\mu\nu}(t;\vec{x}) = \operatorname{Re} \int d^3k A_{\mu\nu}(\vec{k}) e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

Note: $k^{\mu} = (\omega, \vec{k})$ and $k^{\mu}A_{\mu\nu} = 0$ because of the Lorenz gauge

These are gravitational waves!

Using the Lorenz (harmonic) gauge, $\partial^{\nu} \bar{h}_{\mu\nu} = 0$, the Einstein field equations reduce to a wave equation for the trace-

$$= \left(-\frac{1}{c^2} \partial_t^2 + \nabla^2 \right) \bar{h}_{\mu\nu} = 0$$

TRANSVERSE-TRACELESS GAUGE

- - Impose 4 additional gauge conditions: h = 0 (traceless) & $h_{00} = h_{0i} = 0$ (purely spatial)
 - From the Lorenz gauge condition it follows that $\partial^i h_{ij} = 0$, i.e. the metric perturbation is transverse
 - This is the transverse-traceless (TT) gauge, which is not necessary but very convenient.
 - The remaining DOF contain only physical information, non-gauge information about GWs!
- For a plane-wave travelling along the z-axis, the metric perturbation tensor in the TT gauge becomes:

$$h_{ij}^{\rm TT}(t,z) = \begin{pmatrix} h_+ \\ h_\times \\ 0 \end{pmatrix}$$

- 2 DOF: h_+, h_{\times} are the two independent gravitational-wave polarisations

The Lorenz gauge condition does not fix the GR gauge freedom completely for globally vacuum, asymptotically flat spacetimes

$$\begin{array}{ccc} h_{\times} & 0\\ -h_{+} & 0\\ 0 & 0 \end{array} \right)_{ij} \cos(\omega(t-z/c))$$

Note: One can show that the radiative DOF are always contained in the TT-part of the metric perturbation in any gauge!

INTERACTION OF GWS WITH TEST MASSES

- In curved space, test masses move along **geodesics** parameterised by the proper time τ :
 - $\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\sigma} \frac{dx^{\mu}}{d\tau} \frac{dx^{\sigma}}{d\tau} = 0$

$$\frac{d^2\xi^{\mu}}{d\tau^2} + 2\Gamma^{\mu}_{\nu\sigma}\frac{dx^{\mu}}{d\tau}\frac{d\xi^{\sigma}}{d\tau} + \xi^{\sigma}\partial_{\sigma}\Gamma^{\mu}_{\nu\rho}\frac{dx^{\nu}}{d\tau}\frac{d\xi^{\rho}}{d\tau} = 0$$
$$\frac{D^2\xi^{\mu}}{D\tau^2} = -R^{\mu}_{\nu\rho\sigma}\xi^{\rho}\frac{dx^{\nu}}{d\tau}\frac{dx^{\sigma}}{d\tau}$$

- The separation between the two geodesics changes with time in the presence of a gravitational field
 - Two nearby time-like geodesics experience a tidal force, which is determined by the Riemann tensor.

geodesic equation

Let us consider two nearby geodesics, separated by an infinitesimal vector $\xi^{\mu}(\tau)$. If the separation is much smaller than the typical scale of the variation of the gravitational field, the first-order expansion leads to the geodesic deviation equation:

INTERACTION OF GWS WITH TEST MASSES

- Consider a local rest frame at a point P; i.e. $g_{\mu\nu}(P) = \eta_{\mu\nu} \quad \rightarrow \quad \Gamma^{\mu}_{\ \nu\sigma}(P) = 0$
- Consider a non-relativistic observer (e.g. a GW detector), then $dx^i/d\tau \ll dx^0/d\tau$
- Under these assumptions, the geodesic deviation equation reduces to:

$$\ddot{\xi}^i = \frac{1}{2} \ddot{h}_{ij}^{\mathrm{TT}} \xi^j$$

Gravitational waves have the effect of tidal waves, i.e. they change the **proper separation** between two freely-falling test masses periodically: "stretching" and "squeezing" of spacetime

Credit: A. LeTiec

INTERACTION OF GWS WITH TEST MASSES

- Consider a GW travelling down the z-axis in the TT gauge: $h_{\mu\nu}^{TT}(t;z)$.
- Then the proper distance L between the two test masses is given by:

$$L = \int_0^{L_c} dx \sqrt{g_{xx}} = \int_0^{L_c} dx \sqrt{1 + h_{xx}^{\text{TT}}(t; z = 0)}$$
$$\simeq \int_0^{L_c} dx \left[1 + \frac{1}{2} h_{xx}^{\text{TT}}(t; z = 0) \right] = L_c \left[1 + \frac{1}{2} h_{xx}^{\text{TT}}(t; z = 0) \right]$$

- Note: We used the fact that the coordinate separation remains fixed in the TT gauge.
- > When a GW passes, the proper separation changes by a fractional length change (**strain**) $\delta L/L$ given by

$$\frac{\delta L}{L} \simeq \frac{1}{2} h_{xx}^{\mathrm{TT}}$$

Let us consider two freely falling test masses located at z = 0 and separated by a coordinate distance L_c along the x-axis.

 $T_r(t; z = 0)$

This fractional length change = strain is what we measure in GW detectors!

GENERATION OF GRAVITATIONAL WAVES: QUADRUPOLE FORMULA

- Let us assume a slowly moving source in linearised gravity: $v \ll c$
- The solutions to the inhomogeneous wave equation are plane waves (in the Lorenz gauge): $\bar{h}_{\mu\nu}(t; \vec{x}) = 4 \left[d^3x' \frac{T_{\mu\nu}(t - |\vec{x} - \vec{x}'|; \vec{x}')}{|\vec{x} - \vec{x}'|} \right]$. Recall that the radiative degrees of freedom are contained in the spatial TT-part of the metric: $\mu\nu \rightarrow ij$
- At large distance from the source, we can perform a multipole expansion of the denominator analogous the EM to find $\bar{h}_{ij}(t; \vec{x}) = \frac{4}{r} \int d^3x' T_{ij}(t-r; \vec{x'})$ (at linear order), where $r := |\vec{x}|$.
- Using the continuity equation in linearised gravity, i.e. $\partial_{\mu}T^{\mu\nu} = 0$, we can further simplify this integral: $\frac{4}{r}\int d^3x' T_{ij}(t-r; \vec{x'}) = \frac{2}{r}\frac{\partial^2}{\partial t^2}\int d^3x' \rho x'^i x'^j$. Using the definition of the moment of inertia tensor, we arrive at: $\bar{h}_{ij}(t; \vec{x'}) = \frac{2}{r}\frac{d^2I_{ij}(t-r)}{dt^2}$. By projecting out the TT part, we dt^2 arrive at the final answer - the **quadrupole formula**: $h_{ij}^{\mathrm{TT}}(t;\vec{x}) = \frac{2}{2} \frac{d^2 \vec{\lambda}}{dt}$

$$\frac{\mathcal{I}_{kl}(t-r)}{dt^2} P_{ik}(\hat{n}) P_{jl}(\hat{n})$$

mass quadrupole

	1	1	
,			

GENERATION OF GRAVITATIONAL WAVES: LUMINOSITY

- Gravitational waves are some of the most luminous events in the universe
 - GW150914 emitted about 3 solar masses in GWs!
- GW waves carry energy and linear momentum away from the source
- The stress-energy tensor of a propagating gravitational field is given by the Isaacson expression $T_{\mu\nu} = \frac{1}{32\pi} \langle h_{jk,\mu}^{\mathrm{TT}} h_{,\nu}^{\mathrm{TT}jk} \rangle$
 - Brackets denote an average of regions of the size of the wavelength and times of the length of the period.
- The GW luminosity is obtained by integrating the flux over a distant sphere:

$$L_{\rm GW} = \frac{1}{5} \left(\sum_{j,k} \ddot{I}_{jk} \ddot{I}_{jk} - \frac{1}{3} \ddot{I}^2 \right)$$

Note: L_{GW} is dimensionless in geometric units but can be converted via the scale factor $L_0 = c^5/G = 3.6 \times 10^{52} W$.

ASTROPHYSICAL SOURCES OF GRAVITATIONAL WAVES

Any mass distribution with a time-varying quadrupole moment sources gravitational waves

binary black holes, binary neutron stars

supernova explosions

P Schmidt, Univ. of Birmingham

spinning neutron stars, pulsars, magnetars

Cosmological stochastic GW background

COMPACT BINARIES

- Binary systems composed of black holes and neutron stars (also white dwarfs, supermassive black holes)
- Their orbital evolution is driven by the emission of gravitational waves, causing the orbit to shrink: "chirp" signal
- The GW amplitude of a compact binary can be estimated as

$$h \sim \frac{2}{r} \mathcal{M}_c^{5/3} \omega_{\rm orb}^{2/3}$$

The characteristic frequency of a compact object can be estimated as

$$f_0 \sim \frac{1}{4\pi} \left(\frac{3M}{R^3}\right)^{1/2} \sim 1 \,\mathrm{kHz} \left(\frac{10M_{\odot}}{M}\right)$$

- Famous examples: Hulse-Taylor binary pulsar PSR B1913+16, GW150914, GW170817
 - Note: All directly GWs detected to date are consistent with compact binary mergers

CORE-COLLAPSE SUPERNOVAE

- Type II supernovae: Massive stars ($8M_{\odot} \leq M \leq 50M_{\odot}$) collapse at the end of their life and form either a black hole or a neutron star (remnant)
- If the collapse is non-spherical, GWs can carry away binding energy and angular momentum
- The Type II SNe rate in a Milky Way-like galaxy is 0.01-0.1 per year
- The GW amplitude can be estimated to be

$$h \sim 6 \times 10^{-21} \left(\frac{E_{\rm GW}}{10^{-7} M_{\odot}} \right)^{1/2} \left(\frac{1 {\rm ms}}{T} \right)^{1/2} \left(\frac{1 {\rm kHz}}{f} \right)^{1/2}$$

ISOLATED NEUTRON STARS

- Gravitational pulsars = rotating neutron stars with asymmetry (" neutron star mountain")
- The asymmetry leads to a non-symmetric quadrupole tensor
 - Assume a star with uniform density. Its moment of inertia is given by $I = 2MR^2/5$. A mountain with mass *m* will introduce a fractional asymmetry

$$\epsilon = \frac{5m}{2M}$$

- As the star rotates, the mountain will emit GWs, causing the star to spin-down.
- Note: non-observation allows to set an upper limit on ϵ .

Credit: Astrobites

STOCHASTIC GW BACKGROUND

- Superposition of astrophysical events that cannot be resolved individually
- Background from fundamental processes in the early universe, e.g. the Big Bang
 - Expected to be very weak but will allow us to look back at the universe when it was $10^{-30}s$ old and at very high energies!
 - Characterised by the energy density of a random field of gravitational waves with a mean square amplitude per unit frequency $S_{gw}(f)$.
 - The SGWB density parameter is then given by:

$$\Omega_{gw}(f) = \frac{10\pi^2}{3H_0^2} f^3 S_{gw}(f)$$

GW SPECTRUM

P Schmidt, Univ. of Birmingham

GRAVITATIONAL-WAVE DETECTORS

Precision interferometry: Use two (perpendicular) lasers beams to measure the length of each arm

Fractional change in the length of the arms:

 $\Delta L \sim 10^{-18} \,\mathrm{m}$

GRAVITATIONAL-WAVE DETECTORS

P Schmidt, Univ. of Birmingham

A CLOSER LOOK AT ADVANCED LIGO

P Schmidt, Univ. of Birmingham

A CLOSER LOOK AT ADVANCED LIGO

Multi-stage suspension system to reduce seismic noise

Active seismic damping platform

A CLOSER LOOK AT ADVANCED LIGO

- Vacuum system for ultra-pure vacuum
 - Volume: ~9000m³
 - Atmospheric pressure inside the tubes ~ 10⁻⁸-10⁻⁹ Torr
 - Air molecules transfer heat onto mirrors and mimic GWs; dust can damage the mirrors
- Pre-stabilised laser + amplification
 - Input laser power in O3: 70W
 - Laser power is crucial to increase the resolution
- Mirrors: pure fused silica glass at 40kg each
 - 34 x 20 cm
 - 1-in-3-million photons get absorbed
 - Mirrors refocus the laser

Schmidt, Univ. of Birmingham

OTHER DETECTOR CONFIGURATIONS

- Triangular interferometers, e.g.
 - Einstein Telescope: proposed third generation ground-based detector
 - LISA: planned space-based mission
- Resonant bar detectors
- Pulsar timing arrays

SENSITIVITY

- absence of a GW signal.
- Data is recorded as a time series: $(n(t_0), n(t_1), \ldots, n(t_n))$
 - Discrete Fourier transform: $(\tilde{n}(f_0), \tilde{n}(f_1), \dots, \tilde{n}(f_n))$
- - In the continuum limit: $p(n) = \mathcal{N}e^{-\frac{1}{2}\sum_{i=1}^{n} \frac{|\tilde{n}(f_i)|^2}{\sigma_i^2}} \to \mathcal{N}e^{-\frac{1}{2}\sum_{i=1}^{n} \frac{|\tilde{n}(f_i)|^2}{\sigma_i^2}}$
 - $S_{n}(f)$ is the **noise power spectral density** the Fourier transform of the noise autocorrelation function:

 $\langle \tilde{n}(f)\tilde{n}^*(f')\rangle$

The sensitivity of GW detector is characterised by the **power spectral density (PSD)** of its noise background in the

Let us assume that the noise is stationary and Gaussian. Then the probability density of one realisation of noise per frequency bin is given by $p(\tilde{n}(f_i)) \propto e^{-|\tilde{n}(f_i)|^2/(2\sigma_i^2)}$ and total probability density for a noise realisation is $p(n) = \prod p(\tilde{n}(f_i))$. i=0

$$\int_{-\infty}^{\infty} \frac{|\tilde{n}(f)|^2}{S_n(f)} df$$

$$b = \frac{1}{2}S_n(f)\delta(f - f')$$

SENSITIVITY DURING 01/02

Amplitude spectral density = \sqrt{PSD}

Range: Sky and orientation averaged distance such that a BNS has a SNR of 8

[LVC, GWTC-1]

PSD ESTIMATION

Off-source (average) vs. on-source

[Littenberg&Cornish, 2014]

Example: GW170608

MAJOR SOURCES OF NOISE

Schmidt, Univ. of Birmingham

CRYOGENIC COOLING

AGRA, 2020]

STATIONARY & GAUSSIAN?

- Data cleaning

https://www.zooniverse.org/projects/zooniverse/gravity-spy

Some example "glitches"

GW OBSERVATORIES

DETECTOR NETWORK

- Kilometre-scale interferometres
- Sensitive to GWs between a few Hz to a few kHz
- Simultaneous detection increases detection confidence
- Improved sky localisation & polarisation
- Increased duty cycle

GW OBSERVATORIES

LOCALISATION CAPABILITIES

- Individual GW detectors are omnidirectional: poor localisation! Sensitivity depends on location, polarisation and frequency
- Simultaneously operating observatories allow for triangulation via arrival time differences

GW190425

90% CI ~ 8300 deg²

SUMMARY

SOME TAKE-AWAY POINTS

- Gravitational waves are propagating oscillations of a gravitational field generated by accelerating masses
 - They change the proper separation between freely-falling test bodies
 - GWs carry energy & linear momentum from the source
- Spacetime is stiff "extreme" events are needed to produce a measurable strain
 - Compact binary mergers, CCSNe, rotating neutron stars, stochastic GW background
- Operating GW detectors are km-scale (sophisticated) Michelson interferometers
 - The sensitivity is characterised by the noise power spectral density
 - Current generation can measure length changes $\delta L \simeq 10^{-18} m$
 - Single GW antennae have almost no directional sensitivity; to localise a source a network is needed

