

Performance of the AugerPrime Radio Detector

Felix Schlüter

Solution: Electron / muon separation with Surface Detector

Scintillator panel

Performance of the AugerPrime Radio Detector

Felix Schlüter

 $\Theta \le 60^{\circ}$

Goal: Mass sensitivity at highest energies!

Solution: Electron / muon separation with Surface Detector

Performance of the AugerPrime Radio Detector

Felix Schlüter

 $\Theta > 60^{\circ}$

Radio Detector: Increase mass-sensitive exposure + extends sky coverage

Goal: Mass sensitivity at highest energies!

Solution: Electron / muon separation with Surface Detector

 $X_{atm}(75^{\circ}) = 3.8 X_{atm}(0^{\circ})$

Mass sensitivity from μ – e separation

WCD: lg N Fe р $\lg E$ radio

Concept already tested with WCD + FD (low statistics!)

Heitler-Matthews model:

A: mass number

1)
$$N_{\mu,A} \approx A^{0.1} N_{\mu,p}$$

2) $N_{\mu} \sim E^{0.9}$
3) $E_{radio} \sim N_{e,A} \approx N_{e,p}$

- Independent and unbiased energy
- Good energy resolution

Mass sensitivity from μ – e separation

WCD: Heitler-Matthews model: lg N Fe **Ouestions to be answered:** µ,p - How many showers will we detect? 9 - What is the energy resolution? - What is the separation power? $N_{e,A} \approx N_{e,p}$ Lauiu Independent and unbiased energy Good energy resolution

Concept already tested with WCD + FD (low statistics!)

A: mass number

Inclined radio showers

- Detectable with sparse arrays
 - Open window to highest energies
- Gained a lot of attention the last few years

AugerPrime Radio Detector

- Sensitive to radio emission in 30 80 MHz
- Engineering array with 10 antennas since November '21
 - Record first air shower signals and ambient background
 - Currently in mass production

End-to-end simulation

Simulate instrumental response (directional response, analog gain, digitization,)

- Including uncertainties ($\sigma_A = 5\%$)
- Measured noise

Felix Schlüter - felix.schlueter@kit.edu

Full event reconstruction

- For each station determine:
 - Signal-to-noise ratio SNR
 - Signal arrival time
 - Arrival direction
 - Signal energy fluence (power)
 - Shower energy

Etc.

Detection efficiency

Detection condition: min. 3 signal stations

Full efficiency: θ ≥ 70° &lg(E / eV) > 18.8

Aperture for 3000 km² array

Event statistics for 10-year exposure

Using Auger-measured flux

Shower reconstruction

Developed dedicated signal model!

Felix Scnuter - Telix.scnueter@kit.eau

Muons in inclined air showers

 Higher energies and larger statistics

Muon deficit

 Discrimination potential with fluctuation

Summary & Conclusion

RD measures cosmic ray at ultra-high energies and high inclinations with excellent mass sensitivity

- Improve statistics by more than factor 10
- Energy resolution ~ 6%
- Proton-iron discrimination FOM = 1.6
- Measurement of mass composition

We are ready for data!

Backup

- Geometry
- Fudge factor
- Systematics

Refractive displacement of the radio emission

Crucial for:

- Development of precise signal modeling
- Interpretation of hybrid data

Outlook

- Time resolution of Auger insufficient with current setup
- Huge potential:
 - in combination with muon detector
 - radio standalone

Interferometric reconstruction of the depth of the shower maximum

Re-sampling simulations

Lateral signal distribution

Newly developed LDF model*

- 2 parameter + core coordinates
- Derive start values from WCD (use radio rec. arrival direction)
- Integral yields energy estimator

3:25 PM - 3:45 PM

*

Signal model and event reconstruction for the radio detection of inclined air showers using sparse antenna arrays

Felix Schlüter

Felix Schlüter - felix.schlueter@kit.edu

Shower reconstruction

Showers with at least 5 signal stations and $\theta > 68^{\circ}$

quality cuts: ~95% efficiency

Resolution improves with energy

Shower reconstruction

Resolution increases to 9% with 10% amplitude uncertainty

Issue with the

Geometry

Spherical wavefront fit 4 signal stations

Fitted with LDF model 5 signal stations and $\theta > 68^{\circ}$

Geometry

FS et al., EPJC 80 (2020) 7, 643

Spherical wavefront fit 4 signal stations

Fitted with LDF model 5 signal stations and $\theta > 68^{\circ}$

Uncertainty estimation

 Disagreement in resolution between MC-derivation and fit-derivation (uncertainty)

Mass composition scenarios

Forward beamed radio emission

X_{max} reconstruction for inclined air showers

Aperture

Internal RD sciences case report

Increases overall aperture

Overlap with TA

~23%

Energy calibration

 Independent of hadronic interaction model

Detection threshold

Variance reconstructed muon number

Antenna-to-antenna variation for AERA Butterfly antennas

- After galactic calibration $c_i = \frac{1}{n} \sum_{j=\nu_1}^{\nu_n} \frac{A(\nu_i)}{\overline{A}_{\nu_i}},$
 - spread of the amplitudes in single antennas over all antennas for 1 periodic trigger event
 - Average over polarization
- Average of RMS is 5%

Backup

Muon reconstruction

2d simulated density map

$$\rho_{\mu}^{\text{pred}}(\vec{r}) = N_{19} \rho_{\mu,19}^{\dagger}(\vec{r},\theta,\phi)$$

Scaling parameter

- Muon reconstruction bias
 - Zenith angle dependency!

Proton selection efficiency

Simulated RD event

$\log_{10}(E^{\rm MC}/{\rm eV}) = 19.4, \theta^{\rm MC}/^{\circ} = 72.3$			
+	MC core	•	radio signal
	no trigger	×	No radio signal