

### THE INTERNATIONAL SCHOOL OF COSMIC RAY ASTROPHYSICS (ISCRA)

Friday 5<sup>th</sup> August 2022

# Constraining LIV using the muon content of extensive air showers

**Caterina Trimarelli<sup>1</sup>,** Denise Boncioli<sup>1</sup>, Francesco Salamida<sup>1</sup>

1. University of L'Aquila and INFN LNGS

# Lorentz Invariance Violation



The need to study a possible violation of Lorentz invariance arises from the desire to unify quantum mechanics and general relativity.

General Relativity is a classical theory, but quantum effects are not negligible when energy is of the order of the Planck scale,  $M_{Pl} = 1.22 \cdot 10^{28}$  eV.

Possible Lorentz Invariance violation could be observed if physical phenomena characterized by energy of the center of mass of the order of Planck scale energy are studied.





#### INTRODUCTION

LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

# Extensive Air Showers

An air shower is an extensive cascade, with a length of many km, of ionized particles and electromagnetic radiation that initiates when a primary cosmic ray ( $E > 10^{18}$  eV) enters the atmosphere.

The shower is composed of three components:

- The em component characterized by the pair production, the bremsstrahlung and the **ionization energy loss**;
- The hadronic component produced by charged hadronic particles involved in the strong interactions with the atmosphere;
- The muonic component weakly interacts and it can be detected at ground using SD.
- $\pi^+$  $\pi$ Κ π muonic EM cascade hadronic component

component

INTRODUCTION

LIV in EAS MC Simulations Muon Fluctuation CONCLUSIONS

- The lateral distribution;
- The Mean Longitudinal Profile, *dE/dX*.



At the shower maximum we define:

•  $N_{max} = E_0/E_c;$ 

C. TRIMARELLI

•  $X_{max} = X_0 + \lambda_{em} log_2(E_0/E_c)$ 

A nucleus with mass A and energy  $E_0$  is considered as A independent nucleons with energy  $E_0/A$  each.

The superposition of the individual nucleon showers yields:

1) 
$$X_{max} \propto \lambda \frac{E_0}{AE_c}$$
  
2)  $N^A_\mu(X_{max}) = A \left(\frac{E_0/A}{E_{dec}}\right)^\alpha = A^{1-\alpha} N^p_\mu(X_{max})$ 

The muon fluctuation: 
$$\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \alpha_1 \dots - > \frac{N_{\mu}}{\langle N_{\mu} \rangle} = \frac{\alpha_1}{A}$$
.

4

INTRODUCTION

LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

# Pierre Auger Observatory See A. Castellina lectures

70 Loma Amarilla [km] 60 HEA 50 Colhueo 40 30 Morados 20 MALARGÜ Los Leones ---0

#### HYBRID DETECTOR: Fluorescence detector (FD)

- 24 telescopes in 4 sites, FoV: 0-30°, E>10<sup>18</sup> eV
- HEAT (3 telescopes), FoV: 30 60°, E>10<sup>17</sup> eV

## Surface detector (SD): ground array of water Cherenkov detectors

- 1660 stations in 1.5 km grid, 3000 km<sup>2</sup> E > 10<sup>18.5</sup> eV
- 61 stations in 0.75 km grid, 23.5 km<sup>2</sup>,E > 10<sup>17.5</sup> eV

INTRODUCTION LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

#### Underground muon detector



# Hybrid Detection



- Lateral distribution measurement with the SD

Earth

INTRODUCTION

LIV in EAS

**MC** Simulations

Muon Fluctuation

PARAMETERIZATION

CONCLUSIONS

hadronic component

# How to break Lorentz Invariance

Modified dispersion relation

$$E^{2} - p^{2} = m^{2} + f(\overrightarrow{p}, M_{Pl}; \eta) \longrightarrow E^{2} - p^{2} = m^{2} + \sum_{n=0}^{N} \eta^{(n)} \frac{p^{n+2}}{M_{Pl}^{n}}$$

Where  $\eta^{(n)}$  is a dimensionless constant and is called LIV parameter. It depends on the secondary and the primary particle.

Leading order  
n=1: 
$$E^2 - p^2 = m^2 + \eta^{(1)} \frac{p^3}{M_{Pl}}$$
 Nuclei:  $E^2_{A,Z} - p^2_{A,Z} = m^2_{A,Z} + \eta^{(1)}_{A,Z} \frac{p^3_{A,Z}}{M_{Pl}}$   
With  $\eta_A = \eta/A^2$ 

We consider the right-hand side of the modified dispersion relation as a new mass:

$$m_{\rm LIV}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$$
  
can define the Lorentz factor as:  $\gamma_{\rm LIV} = \frac{E}{m_{\rm LIV}}$  In terms of the lifetime  $\tau$  of particles:  $\tau = \gamma_{\rm LIV} \tau_0$ 

INTRODUCTION LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

We

# How to break Lorentz Invariance



We consider the right-hand side of the modified dispersion relation as a new mass:

$$m_{\rm LIV}^2 = m^2 + \eta^{(n)} \frac{p^{n+2}}{M_{\rm Pl}^n}$$

We can define the Lorentz factor as:  $\gamma_{\text{LIV}} = \frac{E}{m_{\text{LIV}}}$ 

In terms of the lifetime au of particles:  $au=\gamma_{
m LIV} au_0$ 

INTRODUCTION LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION

CONCLUSIONS

 $\eta^{(n)}$  assumes both positive and negative values!



# What to expect...

 $\eta < 0$ 

- For increasing energy  $\pi^0$  begins to interact;
- After the critical point (where  $M_{LIV} = 0$ ) the decay  $\pi^0 \rightarrow \gamma \gamma$  is forbidden;



Decrease in the electromagnetic component

INTRODUCTION

LIV in EAS MC Simulations

Muon Fluctuation PARAMETERIZATION CONCLUSIONS

 $\eta > 0$ 

• Negligible effects are produced

First order:  $\eta_{\gamma}^{(1)} > -1.2 \cdot 10^{-10}$ (R. G. Lang, H. Martìnez-Huerta and V. De Souza 2018);

Second order:  $-10^{-3} < \eta_{\pi}^2 < 10^{-1}$ (Maccione et al. 2009).

# CONEX shower simulation

Lorentz Invariant case & in presence of LIV

Shower Simulation Options:

Primary particles: H, He, N, Si, Fe;

Primary particle energy: 10<sup>14</sup>-10<sup>21</sup> eV;

Zenith angle:  $\theta = 70^{\circ}$ ;



21 energy bins of width  $\Delta \log_{10}(E/eV) = 0.25$  ranging from  $10^{14}$  to  $10^{21}$ ;

Hadronic interaction model: EPOS LHC-LIV, QGSJETII-04.

#### in presence of LIV

LIV parameter  $\eta$ :

- 1st order:  $\eta = -10^{-1}, -10^{-3}, -10^{-4}, -10^{-5}, -10^{-6}, -5 \cdot 10^{-7}, -10^{-7}, -10^{-8}$ 

- 2nd order:  $\eta = -1, -10^{-1}, -10^{-2}, -10^{-3}$ 

A number of 5000 events has been simulated for each primary particle for definite energy intervals.



# LIV effects on air shower development





INTRODUCTION LIV in EAS MC Simulations Muon Eluctuation

Muon Fluctuation PARAMETERIZATION CONCLUSIONS

# LIV effects on air shower development



INTRODUCTION

LIV in EAS

**MC** Simulations

Muon Fluctuation

PARAMETERIZATION

CONCLUSIONS

#### C. TRIMARELLI

#### **MUON CONTENT DISTRIBUTION**



INTRODUCTION LIV in EAS MC Simulations **Muon Distribution** PARAMETERIZATION CONCLUSIONS

#### **MUON CONTENT DISTRIBUTION**

ORDER OF LIV n=1

**EPOS-LHC**  $\eta = -10^{-3}$ 



Ratio of the fluctuations to the average number of muons



INTRODUCTION LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

11

#### **MUON CONTENT DISTRIBUTION**



Considering the dependence of the decrease of the relative fluctuations on the different LIV strengths, a new bound for the LIV parameter can be obtained



INTRODUCTION LIV in EAS MC Simulations **Muon Fluctuation** PARAMETERIZATION CONCLUSIONS

11

### Looking for... the most conservative relative Fluctuations

#### Which combination of primaries gives the most conservative LIV model?

- Effects of the different composition scenarios: The mixture of the two 1. A. Aab et al. [Pierre Auger] Phys. Rev. Lett. components p and Fe gives the maximum value of relative fluctuations. 126 (2021) no.15, 152002
- 2. Define  $\frac{\sigma_{\mu}}{\langle N_{\mu} \rangle} = \frac{\sqrt{\sigma^2(N_{\mu})_{\text{mix}}(\alpha;\eta)}}{\langle N_{\mu} \rangle_{\text{mix}}(\alpha;\eta)}$  **\***  $1 \alpha$  is the fraction of proton  $\alpha$  is the fraction of iron
- 3. Parametrize as function of  $\eta$  and energy  $\langle N_{\mu} \rangle_{p}$ ,  $\langle N_{\mu} \rangle_{Fe'} \sigma(N_{\mu})_{p}$  and  $\sigma(N_{\mu})_{Fe'}$

for any LIV parameter value we can calculate the most conservative LIV relative fluctuations as a function of the energy without repeating any shower simulation

We found 
$$\max_{\alpha} \frac{\sigma_{\mu}}{\langle N_{\mu} \rangle} = \frac{\sqrt{RMS^2(N_{\mu})(\alpha)}}{\langle N_{\mu} \rangle(\alpha)}$$
 wrt  $\alpha$ 



INTRODUCTION LIV in EAS **MC** Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

# Maximum Mixed Relative Fluctuations

for any LIV parameter value we can calculate the most conservative LIV relative fluctuations as a function of the energy without repeating any shower simulation



C. TRIMARELLI

## Most conservative Mixed Relative Fluctuations

![](_page_18_Figure_1.jpeg)

Continuous confidence levels to exclude LIV models

INTRODUCTION

LIV in EAS MC Simulations Muon Fluctuation Constraining LIV

CONCLUSIONS

## Most conservative Mixed Relative Fluctuations

![](_page_19_Figure_1.jpeg)

LIV in EAS

# Summary Pos ICRC2021 (2021) 340

- For the first time LIV effects have been studied considering muon fluctuations;
- Using the parameterization we obtain the muon fluctuation as a function of energy without shower simulations;
- We found  $\alpha$  that corresponds to the most conservative H-Fe mixed case;
- <u>Using the parameterization we obtained a new bound for LIV parameter values;</u>

## Future prospects

- Limits on  $\eta$  parameter could be found through a combined analysis considering simultaneously muon content distribution and the mass composition derived from the  $X_{\text{max}}$  measurements;
- Future works will involve other hadronic interaction models as QGSJETII-04 and SiBYLL 2.3d;
- This analysis published soon
- ◆ Other works within PAO PoS ICRC (2015) 521 PoS ICRC (2017) 561 PoS ICRC (2019) 327

![](_page_20_Picture_10.jpeg)

INTRODUCTION LIV in EAS MC Simulations Muon Fluctuation PARAMETERIZATION CONCLUSIONS

# Thank you for your attention!

# Backup

## Muon Fluctuations

- <u>In the standard case:</u>  $\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \alpha_1 \dots >$  for primary particle with mass A  $\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \frac{\alpha_1}{A} \dots$ 

 in the presence of LIV <u>Reduction of Muon Fluctuations</u>: the proton is behaving as a heavier nucleus and the fluctuations decrease

![](_page_23_Figure_3.jpeg)

## Relative Fluctuations

In the standard case: 
$$\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \alpha_1 \dots >$$
 for primary particle with mass A  $\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \frac{\alpha_1}{A} \dots$ 

 $\langle N_{\mu}(E) \rangle = m^{g} = CE^{\beta} \longrightarrow \sigma(m_{i}) = \frac{\sigma(m)}{\sqrt{N_{i-1}}} \longrightarrow$  the fluctuations are mostly dominated by the first interaction!

![](_page_24_Figure_3.jpeg)

INTRODUCTION LIV in EAS **MC** Simulations **Muon Fluctuation** PARAMETERIZATION CONCLUSIONS

![](_page_25_Figure_0.jpeg)

C. TRIMARELLI

8

## Looking for... the most conservative relative Fluctuations

- 1. **Effects of the different composition scenarios:** The mixture of the two components p and Fe gives the maximum value of relative fluctuations.
- 2. Define  $\frac{\sigma_{\mu}}{\langle N_{\mu} \rangle} = \frac{\sqrt{\sigma^2(N_{\mu})_{\text{mix}}(\alpha;\eta)}}{\langle N_{\mu} \rangle_{\text{mix}}(\alpha;\eta)}$   $\begin{pmatrix} 1 \alpha \text{ is the fraction of proton} \\ \alpha \text{ is the fraction of iron} \end{pmatrix}$
- 3. Parametrize as function of  $\eta$  and energy  $\langle N_{\mu} \rangle_{p'} \langle N_{\mu} \rangle_{Fe'} \sigma(N_{\mu})_p$  and  $\sigma(N_{\mu})_{Fe'}$

![](_page_26_Figure_4.jpeg)

The maximum wrt  $\alpha$  curve is always above the curves given by any other  $\alpha$  combinations

Only if the fluctuations stand below the data the  $\max_{\alpha} \frac{\sigma_{\mu}}{\langle N_{\mu} \rangle}$  is the most conservative LIV model

LIV in EAS MC Simulations

Muon Fluctuation PARAMETERIZATION CONCLUSIONS

## Most conservative Mixed Relative Fluctuations

![](_page_27_Figure_1.jpeg)

LIV in EAS

## Relative Fluctuations

Effects of the different composition scenarios

![](_page_28_Figure_2.jpeg)

#### Where

$$\langle N_{\mu} \rangle_{\text{mix}}(\alpha;\eta) = (1-\alpha) \langle N_{\mu} \rangle_{p} + \alpha \langle N_{\mu} \rangle_{Fe} \sigma^{2}(N_{\mu})_{\text{mix}}(\alpha;\eta) = (1-\alpha) \sigma^{2}(N_{\mu})_{p} + \alpha \sigma^{2}(N_{\mu})_{Fe} + (\alpha(1-\alpha)(\langle N_{\mu} \rangle_{p} - \langle N_{\mu} \rangle_{Fe})^{2}$$

See GAP-notes GAP 2011-118

 $1 - \alpha$  is the fraction of proton  $\alpha$  is the fraction of iron

 $\eta_{\pi}$  > 0

#### LIV SECOND ORDER

![](_page_29_Figure_2.jpeg)

![](_page_30_Figure_0.jpeg)