Radio Neutrino Observatory Greenland

Calibration & Ice modelling

Radio Neutrino Observatory

A whole range of neutrino energies

Look at very high energies!

1

Detecting UHE neutrinos is a challenge

Interact rarely

OR

Extreem low flux

The Askaryan Effect

 $\Rightarrow \lambda << \text{size: destructive interference}$ $\Rightarrow \lambda >> \text{size: constructive interference}$ = Askaryan Effect

That's why we **use radio**!

Absorption lengths polar ice:

- $\lambda \sim 400 \text{ nm}$ (optical) $\rightarrow \sim 200 \text{ m}$
- $\lambda \sim 1.00 \text{ m}$ (radio) $\rightarrow \sim 1200 \text{ m}$

Energy > 1 PeV \rightarrow lower flux \rightarrow need of large detection volume

Span a larger volume with same amount of radio detectors then with optical detectors

The RNO-G array

35 autonomous stations:

- LTE comms to Summit Station
- ~10% of data via satellite
- solar/wind powered

The RNO-G array

Station numbering on a grid

The RNO-G array

We build 3 stations in 2021 ... and 4 more past month

Station design

RNO-G [2010.12279]

Surface component:

Cosmic rays, veto, v detection, more channels for reconstruction

Deep component: Effective volume neutrinos

Designed to be scalable → Informs array design IceCube-Gen2

The importance of ice & the need for numerical ray tracing

Reconstruction relies on ice & antenna position

Reconstruction uses paths of radio rays

Ray paths influences by:

- Refractive index ice
- Position of antenna

Glacier ice can be very complex in reality

Single exponential

NuRadioMC [1906.01670]

Complex ice features

Glacier ice can be very complex in reality

RadioPropa traces ray path by iterative scanning using paraxial approximation of **Eikonal equations**

RadioPropa [1810.01780] & Contribution ICRC 2021

Firn model has effect on reconstruction Contribution ICRC 2021

Pulser reconstruction & station calibration

Reconstruction relies on ice & antenna position

Reconstruction uses paths of radio rays

Ray paths influences by:

Refractive index icePosition of antenna

Station calibration: position

Hpol & Vpol antennas

Station calibration: position

Pulser reconstruction

Ray tracing takes to long for fitting procedure Assume direct path ≈ spherical waves Relative timing channel pairs (signal correlation & spherical sim) **Difference** between rel. timings

Minimize this difference

pulser

Horizontal dis

14

Pulser reconstruction

Ray tracing takes to long for fitting procedure

Assume direct path ≈ spherical waves

Relative timing channel pairs
(signal correlation & spherical sim)

Difference between rel. timings

Minimize this difference

14

Relative timing by signal cross correlation (sim)

Different signal shapes

Harder to correlate

\rightarrow timing issues \rightarrow faulty reconstruction

Calibration: an **iterative** procedure

- Reconstruct pulser & antennas using relative timing & assuming:
- Certain ice model
- Detector & antenna characteristics (cable delays, respons ...)
 - Initial antenna position & constraints

Use reconstructed antenna position to:
Refine ice model
Detector & antenna characteristics

Summary

RNO-G is growing:

Position calibration started \rightarrow lots of **difficult facets**:

Calibration pulser

12

Detector layout

Thank You!

Bob Oeyen

PhD student Physics & Astronomy Experimental Particle Physics - Ghent University

Bob.Oeyen@UGent.be

