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Figure 29.8: The all-particle spectrum as a function of E (energy-per-nucleus)
from air shower measurements [91–106].

energy. Some types of expanding supernova remnants, for example, are estimated not
to be able to accelerate protons above energies in the range of 1015 eV. Effects of
propagation and confinement in the Galaxy [111] also need to be considered. A discussion
of models of the knee may be found in Ref. 112. The Kascade-Grande experiment [101]
has reported observation of a second steepening of the spectrum near 8 × 1016 eV, with
evidence that this structure is accompanied a transition to heavy primaries.

Concerning the ankle, one possibility is that it is the result of a higher energy
population of particles overtaking a lower energy population, for example an extragalactic
flux beginning to dominate over the galactic flux (e.g. Ref. 107). Another possibility is
that the dip structure in the region of the ankle is due to pγ → e+ + e− energy losses
of extragalactic protons on the 2.7 K cosmic microwave radiation (CMB) [114]. This
dip structure has been cited as a robust signature of both the protonic and extragalactic
nature of the highest energy cosmic rays [113]. If this interpretation is correct, then the
galactic cosmic rays do not contribute significantly to the flux above 1018 eV.
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to be able to accelerate protons above energies in the range of 1015 eV. Effects of
propagation and confinement in the Galaxy [111] also need to be considered. A discussion
of models of the knee may be found in Ref. 112. The Kascade-Grande experiment [101]
has reported observation of a second steepening of the spectrum near 8 × 1016 eV, with
evidence that this structure is accompanied a transition to heavy primaries.

Concerning the ankle, one possibility is that it is the result of a higher energy
population of particles overtaking a lower energy population, for example an extragalactic
flux beginning to dominate over the galactic flux (e.g. Ref. 107). Another possibility is
that the dip structure in the region of the ankle is due to pγ → e+ + e− energy losses
of extragalactic protons on the 2.7 K cosmic microwave radiation (CMB) [114]. This
dip structure has been cited as a robust signature of both the protonic and extragalactic
nature of the highest energy cosmic rays [113]. If this interpretation is correct, then the
galactic cosmic rays do not contribute significantly to the flux above 1018 eV.
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Tycho's Supernova Remnant (SN 1572) 
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Galactic Cosmic Rays

CR diffusion

source

• Standard paradigm: 
Galactic CRs accelerated in 
supernova remnants


• sufficient power:  
per 3 SNe per century


• diffusive shock acceleration:


• rigidity-dependent escape 
from Galaxy:


• mostly isotropic CR arrival 
directions

∼ 10−3M⊙

nCR ∝ E−Γ

nCR ∝ E−Γ−δ

[Baade & Zwicky'34]
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Galactic Cosmic Rays Anisotropy

32NDINTERNATIONALCOSMICRAYCONFERENCE,BEIJING2011

Figure1:Two-dimensionalrelativeintensitymapintheequatorialcoordinatesystemof5TeVgalacticcosmicrays
observedbytheTibetair-showerexperiment.
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Figure2:(a)ThesiderealdailyvariationobservedbytheTi-
betexperimentat6.2TeVfromDecember2001toNovember
2003.Thebest-fitfunctionwiththreeFouriercomponentsis
shownbytheblackline.(b)Theanti-siderealdailyvariation
observedbytheTibetexperimentat6.2TeVfromDecem-
ber2001toNovember2003.Thebest-fitsinusoidalcurveis
shownbytheblackline.
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[e.g. MA & Mertsch'16]

Cosmic ray anisotropies up to the level of one-per-mille at various energies 

(Super-Kamiokande, Milagro, ARGO-YBJ, EAS-TOP, Tibet AS , IceCube, HAWC)γ

anisotropy map
δI = FCR

⟨FCR⟩4π
− 1
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Galactic Cosmic Rays Anisotropy

IceCube & 
IceTop

Milagro
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Pierre Auger 

Observatory
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Cosmic ray anisotropies up to the level of one-per-mille at various energies 

(Super-Kamiokande, Milagro, ARGO-YBJ, EAS-TOP, Tibet AS , IceCube, HAWC)γ
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Ground-Based Observations

Equatorial

North

East

South

West

ZenithZenith

relative acceptance at 09:00 LST

0.82 1.65

Field of View (FoV) of ground-based detector (e.g. HAWC at 
geographic latitude ) sweeps across the Sky over 24h.19∘

East West
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Fig. 2.— Cosmic ray intensity variation in the local sidereal time frame for CRs with the

modal energy around 5 TeV in the 9 phases of Tibet III Array. Top: 2D intensity map of

each phase; Bottom: 1D projection averaged over all declinations. In bottom plots of each

panel, the red crosses in each plot show the intensity variation over each phase respectively,

while the dashed blue lines represent the intensity averaged over all nine phases of Tibet III

array.

of multi-TeV GCRs is insensitive to the solar activity. It disagrees with the recent result of

Milagro experiment (Abdo et al. 2009), which shows an increase in the amplitude of the

sidereal anisotropy with time while the phase remains stable.

No significant variation of TeV-PeV anisotropy over the 
time scale of  years.𝒪(10)

[Tibet-AS  '10]γ
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Large-Scale Anisotropy

Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Amplitude of large-scale dipole anisotropy has strong energy 
dependence with a phase flip around 100 TeV.

[IceCube & IceTop '21]

Large-Scale Anisotropy
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Dipole Anisotropy of UHE CRs
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Figure 2: Map showing the fluxes of particles in equatorial coordinates. Sky map in equatorial
coordinates, using a Hammer projection, showing the cosmic-ray flux above 8 EeV smoothed
with a 45� top-hat function. The Galactic center is marked with an asterisk and the Galactic plane
is shown by a dashed line.

Table 2: Three dimensional dipole reconstruction. Directions of dipole components are shown
in equatorial coordinates.

Energy

[EeV]

Dipole

component dz

Dipole

component d?
Dipole

amplitude d
Dipole

declination dd [
�
]

Dipole right

ascension ad [
�
]

4 to 8 �0.024 ± 0.009 0.006+0.007
�0.003 0.025+0.010

�0.007 �75+17
�8 80 ± 60

8 �0.026 ± 0.015 0.060+0.011
�0.010 0.065+0.013

�0.009 �24+12
�13 100 ± 10

studies that found that the effects of higher-order multipoles are not significant in this energy
range [25, 29, 30], the dipole components and its direction in equatorial coordinates (ad, dd) can
be estimated from

d? ' ra

hcos di , dz '
bj

cos `obshsin qi , ad = ja, tan dd =
dz
d?

, (3)

[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.
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studies that found that the effects of higher-order multipoles are not significant in this energy
range [25, 29, 30], the dipole components and its direction in equatorial coordinates (ad, dd) can
be estimated from

d? ' ra

hcos di , dz '
bj

cos `obshsin qi , ad = ja, tan dd =
dz
d?

, (3)

[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.

5

[Pierre Auger Observatory '17]
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Issues with Reconstructions

Equatorial

North

East

South

West

ZenithZenith

relative acceptance at 09:00 LST

0.82 1.65

Ground-based detectors needs to be calibrated by the CR 
data it collects while it sweeps across the sky over 24h.
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Issues with Reconstructions

True CR dipole is defined by amplitude  and direction .


Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′￼= A cos δ

Equatorial

60±120±180±300± 240±

60±

30±

°30±

°60±

North

East

South

West

Zenith

dipole anisotropy

-0.0003 0.0003

[Iuppa & Di Sciascio’13; MA et al.’15]
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Issues with Reconstructions

Equatorial

60±120±180±300± 240±

60±

30±

°30±

°60±

North

East

South

West

Zenith

dipole anisotropy

-0.0003 0.0003

True CR dipole is defined by amplitude  and direction .


Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′￼= A cos δ

[Iuppa & Di Sciascio’13; MA et al.’15]
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Issues with Reconstructions

Equatorial

60±120±180±300± 240±

60±

30±

°30±

°60±

reduced dipole anisotropy

-0.0003 0.0003

True CR dipole is defined by amplitude  and direction .


Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′￼= A cos δ

[Iuppa & Di Sciascio’13; MA et al.’15]
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Dipole Anisotropy
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Reconstruction
Reconstruction Methods

8 data is strongly time-dependent:

• detector deployment/maintenance
• atmospheric conditions

(day/night, seasons)
• power outages,. . .

8 local anisotropies of detector:

• detector geometry
• mountains
• geo-magnetic fields,. . .

• two analysis strategies:

• Monte-Carlo & monitoring
(limited by systematic uncertainties)

• data-driven likelihood methods
(limited by statistical uncertainties)

Searching for All-Scale Anisotropies in the Arrival Directions of Cosmic Rays above the Ankle 5

nti with a Gaussian beam with an appropriate angu-
lar size. This procedure will only affect the small-scale
anisotropy that is present in the data, but undistinguish-
able from the noise introduced by Poisson fluctuations.

Instead of smoothing the original event map to ac-
count for the limited statistics in cosmic ray data above
the ankle, it is also possible to adapt the maximum-
likelihood method to account for a smoothing scale in
the relative intensity. This can be done by an expansion
of the anisotropy into spherical harmonics (13) that is
truncated at a maximum moment `max. We discuss the
case of a general truncation scale `max in Appendix B
and concentrate hear on the dipole anisotropy, `max = 1.
In this case, it is convenient to work with the expansion

dIdipole(a, d) = dxx(a, d) + dyy(a, d) , (21)

where x(a, d) = cos a cos d and y(a, d) = sin a cos d.
These basis functions correspond to the projection of
the unit vector n into the equatorial plane. The relation
to spherical harmonics is x =

p
2p/3(Y1�1 � Y11) and

y = i
p

2p/3(Y1�1 + Y11) and therefore a1�1 = �a�
11 =

p
2p/3(dx + idy). Note that the third component of n

perpendicular to the equatorial plane is proportional to
Y10, which is not accessible by this data-driven method
as explained in section 3. The dipole (21) automatically
satisfies the normalisation condition Âa dIa = 0.

With this ansatz for the relative intensity, the maxi-
mum likelihood solution (d?

x, d?
y , N ?, A?) for a d?

x � 1
and d?

y � 1 is given by Eqs. (19) and (20) together with
the simple matrix equation (see Appendix A for details)

Â
ti

nti

✓
x2

ti xtiyti
xtiyti y2

ti

◆ ✓
d?

x
d?

y

◆

' Â
ti

✓
(nti � N ?

t A?
i )xti

(nti � N ?
t A?

i )yti

◆
. (22)

Here, we again make use of the notation xti ⌘

x(R(tt)n0(Wi)), etc. As before, the non-linear system of
equations (19), (20), and (22) can only be solved via an it-
erative reconstruction method outlined in Appendix A.

Another advantage of the likelihood-based dipole
reconstruction method is the simplicity of estimating
the significance of the observation. The maximum-
likelihood ratio between the best-fit dipole anisotropy
and the null hypothesis, I = 1, defines the maximum-
likelihood test statistic

l = 2 ln
L(n|d?

x, d?
y , N ?

t , A?
i )

L(n|0, 0, N (0)
t , A(0)

i )
. (23)

According to Wilks (1938), data following the null hy-
pothesis has a distribution in l that follows a two-
dimensional �2-distribution. The p-value of the ob-
served data, i.e., the probability of a false positive iden-
tification of the dipole anisotropy, is simply given by
p = e�l/2.
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FIG. 1.— Arrival time of events with E > 8 EeV in terms of modified
Julian days (top) and sideral time (bottom). The horizontal thin line in
the lower plot indicates the mean number of events per 20min.

We can also use the maximum likelihood (15) to es-
timate the parameter uncertainties, sx/y, of the dipole
amplitudes d?

x/y. The derivation for the covariance ma-
trix for general `max is discussed in Appendix B. For
the case of the dipole anisotropy it can be well approxi-
mated as

s�2
x ' Â

ti
nti(xti)

2
� Â

t

(N ?
t )2

Âi nti

✓
Â

j
A

?
j xt j

◆2
, (24)

with an analogous equation for the uncertainty sy of
the second component dy. The first term of expres-
sion (24) is approximately Ntot/2, where Ntot is the to-
tal event number. This corresponds to the naive first
order approximation

p
2/Ntot of the uncertainty. How-

ever, the second term increases the error in the dipole
reconstruction. It is accounting for the fact that the sta-
tistical power of the data is also used to separately deter-
mine the background rate. As we will see in the follow-
ing, this will lead to a weaker significance of the Auger
dipole reconstruction compared to the original analysis
in Aab et al. (2017).

5. ANALYSIS OF AUGER DATA

We will now apply the previously discussed methods
to the Auger data at energies above 8 EeV. The Pierre
Auger Observatory (Aab et al. 2015) is located near the
city of Malargüe, Argentina, at a geographic latitude of
F ' 35.2�S and longitude � ' 69.5�W. The 32187 cos-
mic ray events used in this analysis has been recorded

example: Auger data > 8 EeV
[MA’18]
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• data has strong time dependence


• detector deployment/
maintenance


• atmospheric conditions (day/
night, seasons)


• power outages, etc.


• local anisotropy of detector:


• non-uniform geometry


• two analysis strategies:


• Monte-Carlo & monitoring 
(limited by systematic 
uncertainties)


• data-driven likelihood methods 
(limited by statistical 
uncertainties)

Example: Auger data > 8 EeV

[Pierre Auger Observatory'17; MA'18]



Markus Ahlers (NBI) Cosmic Ray Anisotropy

• Strong time variation of CR background level can be compensated by 
differential methods.


• East-West asymmetry:


• Fo rinstance, Auger data > 8EeV:


• best-fit dipole from EW method: and (8.2 ± 1.4) % αd = 135∘ ± 10∘

25

East-West Method
Data-Driven: East-West Method

• Strong time variation of cosmic ray background level can be compensated by
di↵erential methods. [e.g. Bonino et al.’11]

• East-West asymmetry:

AEW(t) ⌘
NE(t) � NW(t)
NE(t) + NW(t)

' Da
∂

∂a
dI(a, 0)

| {z }
if dipole!

+ const| {z }
local asym.

• For instance, Auger data > 8 EeV:
Auger E > 8 EeV

036912151821
local sidereal time [h]
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]

• best-fit dipole from EW method: d? = (8.2 ± 1.4)% and ad = 135� ± 10�
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AEW(t) ≡
NE(t) − NW(t)
NE(t) + NW(t)

≃ Δα
∂

∂α
δI(α,0)

assuming dipole!

+ const
⏟

local asym.

[e.g. Bonino et al.'11]
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Likelihood Reconstruction
• East-West method introduces cross-talk between higher multipoles, regardless 

of the field of view.


• Alternatively, data can be analyzed to simultaneously reconstruct:


• relative acceptance  (in local coordinates)


• relative intensity  (in equatorial coordinates)


• background rate  (in sidereal time)


• expected number of CRs observed in sidereal time bin  and local "pixel" :


• reconstruction likelihood:


• Maximum LH can be reconstructed by iterative methods.


• used in joint IceCube & HAWC analysis


𝒜(φ, θ)
ℐ(α, δ)
𝒩(t)

τ i

μτi = μ(ℐτi, 𝒩τ, 𝒜i)

ℒ(n |ℐ, 𝒩, 𝒜) = ∏
τi

(μτi)nτie−μτi

nτi!

[MA et al.'15]

[IceCube & HAWC '18]
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Likelihood Reconstruction
Data-Driven: Likelihood Reconstructions

Equatorial

60�120�180�300� 240�

60�

30�

�30�

�60�

anisotropy (E > 8 EeV, 45� smoothing)

-0.059 0.059

[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Likelihood Reconstruction
Data-Driven: Likelihood Reconstructions

Equatorial

60�120�180�300� 240�

60�

30�

�30�

�60�

pre-trial significance (E > 8 EeV, 45� smoothing, smax = 4.86)

-5 5

[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Take-Away on Reconstruction

Data-driven methods of anisotropy reconstructions used by 
ground-based observatories in the TV-PV range are 


only sensitive to equatorial dipole

(or, more generally, to all  multipole moments).





m ≠ 0

Δδ⊥ ∼
1
NCR

𝒩 ∼
4π

NCR

Monte-Carlo-based methods of anisotropy reconstructions are 
sensitive to the full dipole, but are severely


limited by systematic uncertainties.
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Particles in Magnetic Fields

30

•  natural Heaviside-Lorentz units:


• For instance, Coulomb force:


• Lorentz force:


• EoM in the absence of : 
E

ℏ = c = 1 μ0 = ϵ0 = 1

F =
q1q2

4πr2
er = α

Z1Z2

r2
er

F = q (E + β × B)
rL

FL

p

⊙ B

·p = p × Ω
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Particles in Magnetic Fields

30

•  natural Heaviside-Lorentz units:


• For instance, Coulomb force:


• Lorentz force:


• EoM in the absence of : 
E

ℏ = c = 1 μ0 = ϵ0 = 1

F =
q1q2

4πr2
er = α

Z1Z2

r2
er

F = q (E + β × B)

·p = p × Ω

Ω ≡ q
γm

B

rL = β
|Ω |

= ℛ
|B |

ℛ = |p |
q

rigidity:

Larmor radius:

Larmor frequency:



Markus Ahlers (NBI) Cosmic Ray Anisotropy

Particle Gyration

31

The pitch angle  between  and  remains constant in time.


The path is a superposition of circular motion in the plane 
perpendicular to  and linear motion along  with velocity:


.

θ v(t) B0

B0 B0

v∥ = cos θv ≡ μv

=
v⊥

Ω
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• Cosmic rays with the same rigidity  follow same trajectories.


• We expect that cosmic ray anisotropies depend on rigidity, not energy.


• Low-energy cosmic rays are affected by the O(1G) geomagnetic field.


• High-energy cosmic rays experience deflections in Galactic O(10-6 G) 
and extragalactic O(10-9 G) magnetic fields:


• In addition to regular magnetic fields, random magnetic fields introduce 
a random walk that can be treated as a diffusive process.

ℛ

Larmor Radius

rL ≃ 1.1pc
1μG

B
ℛ

1015V

32
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Cosmic Ray Diffusion

• Galactic and extragalactic 
magnetic fields have a 
random component (no 
preferred direction).


• Effectively, after some 
characteristic distance    , 
a CR will be scattered into 
a random direction.


• Cosmic ray propagation 
follows a random walk.


• After N encounters the CR 
will have travelled an 
average distance: d = Nλ

λ

random walk of particles 


in a random magnetic field

d

33
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• In the following, we consider relativistic particles in magnetic fields 
with vanishing electric fields ( ) due to the high conductivity of 
astrophysical plasmas:


• We also consider only homogenous and isotropic turbulence.


• Turbulence can be characterized by its two-point correlation function:


• To characterize the turbulence we look into the Fourier modes:


E = 0

34

Magnetic Turbulence

B(r) = B0ez⏟
ordered

+ δB(r)
⏟
turbulent

⟨δBi(r)δBj(r′￼)⟩ = Cij(r − r′￼)

δBi(r) = ∫ d3k δB̃i(k)eikr
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• Real valued fields obeying  require:


• The two-point correlation function can now be expressed in Fourier 
space:


• The power spectrum  is normalized to the energy density of the 
turbulence:


• For instance, in Kolmogorov turbulence:

∇δB = 0

𝒫(k)

35

Magnetic Turbulence

⟨δB̃i(k)δB̃*i (k′￼)⟩ = δ(k − k′￼)(δij −
kikj

k2 ) 𝒫(k)
4πk2

UδB =
1
2

⟨δB2⟩ = ∫ dk𝒫(k)

δB̃*j (k) = δB̃j(−k) kδB̃j(k) = 0

𝒫(k) ∝ k−5/3 (kmin < k < kmax)

&
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Particle Gyration

36

The pitch angle  between  and  remains constant in time.


The path is a superposition of circular motion in the plane 
perpendicular to  and linear motion along  with velocity:


.

θ v(t) B0

B0 B0

v∥ = cos θv ≡ μv

=
v⊥

Ω
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Particle Gyration

37

=
v⊥

Ω

k δB

Consider now a magnetic perturbation in form of a plane wave:


δB = δBex cos(kz + α)

↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓
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Particle Gyration

38

=
v⊥

Ω

k δB↑ ↑ ↑ ↑ ↑ ↑ ↑↓ ↓ ↓ ↓ ↓ ↓

The time-averaged Lorentz force  along the path 
has the strongest contribution at the resonance: 


δFL = qβ × δB

kv∥ = ± Ω
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• We will work in the following with the CR phase-space density (PSD):


• for cosmic rays moving into solid angle  with momentum :


• cosmic ray intensity ("spectral flux"):


• cosmic ray spectral density:


Ω p = γβm

39

Phase-Space Density

f(t, r, p) ≡
dN

d3r d3p

d3r × d3p → β dt dA⊥ × dΩ p2dp

F(t, r, E, Ω) ≡
dN

dt dA⊥ dΩ dE
= βp2 dp

dE
f(t, r, p) = p2 f(t, r, p)

n(t, r, E) ≡
dN

d3r dE
=

1
β ∫ dΩF(t, r, E, Ω) =

4π
β

p2 ⟨ f(t, r, p)⟩4π
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• Let's assume that CRs propagate in static magnetic fields without 
dissipation or sources.


• Number of CRs per PS volume is constant:


• Equivalent to Liouville's equation:


• Lorentz force in magnetic field: 


• Vlasov equation:


40

Liouville's Theorem

·f(t, r, p) = 0

∂t f + ·r∇r f + ·p∇p f = 0

∂t f + β ∇r f + [p × (Ω + ω)]∇p f = 0

·p = p × (Ω + ω) Ω ≡ eB/p0

background field

ω ≡ eδB/p0

turbulence

with and 
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• We can express the Vlasov equation in the form ( ):


• We now look at the ensemble-average PSD: 


• Expanding  and averaging (A) over magnetic ensemble:


• The evolution of  follows from the difference (A) - (B):


L ≡ ip × ∇p

⟨ f⟩

f = ⟨ f⟩ + δf

δf

41

Vlasov Equation

∂t f + β ∇r f − i [Ω + ω] L f = 0

∂t ⟨ f ⟩ + β ∇r ⟨ f ⟩ − iΩL ⟨ f ⟩ = i⟨ωL δf ⟩

collision term

≡ ( ∂f
∂t )

c

∂t δf + β ∇r δf − iΩL δf = iωL ⟨ f ⟩ − [i⟨ωL δf ⟩ − iωL δf]
≃0

(A)

(B)
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• We can solve along unperturbed particle paths :


• This allows to derive a formal solution to the collision term:


• The collision term on the R.H.S. depends on the form of the magnetic 
turbulence and can, in general, not be solved analytically.


• In BGK approximation we can simplify it as:


𝒫0

42

Collision Term

δf(t, r0(t), p′￼0(t)) ≃ − ∫
t

−∞
dt′￼[iωL ⟨ f ⟩]𝒫0(t′￼)

( ∂f
∂t )

c
≃ ⟨ωL ∫

t

−∞
dt′￼[ωL ⟨ f ⟩]𝒫(t′￼)⟩

( ∂f
∂t )

c
→ − ν [⟨ f ⟩ −

1
4π ∫ dΩ⟨ f ⟩]

[Bhatnagar, Gross & Krook'54]
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Diffusion Approximation
• We will work with the BGK approximation in the following.


• Consider the monopole and dipole contribution of the ensemble 
averaged PSD:


• Ignoring higher harmonics we can re-write the Vlasov equation as:


• Assuming that  we arrive at the diffusion equation:
∂t |Φ | ≪ ∂tϕ

ϕ(t, r, p) =
1

4π ∫ dΩ⟨ f(t, r, p(Ω)⟩ Φ(t, r, p) =
1

4π ∫ dΩp̂(Ω)⟨ f(t, r, p(Ω)⟩

∂tϕ + β ∇Φ = 0 ∂tΦ +
β
3

∇ϕ + Ω × Φ = − ν Φ

∂tϕ − ∂i (Kij∂jϕ) = 0 K =
β2

3

ν−1
⊥ ν−1

A 0
−ν−1

A ν−1
⊥ 0

0 0 ν−1
∥

ν∥ = ν
ν⊥ = ν + Ω2/ν

νA = Ω + ν2/Ω

&

&
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Diffusion Approximation
• Consider now a CR source term:


• Green's function for :


• General solution:


• Impulsive source, , in isotropic diffusion:


Q(t, r, p) = δ(r − rs)δ(t − ts)

Q = Q⋆(p)δ(t)δ(r − rs)

∂tϕ − ∂i (Kij∂jϕ) = Q(t, r, p)

G(t, r; ts, rs) = (4πΔt)−3/2(det Ks)−1/2exp (−
ΔrTK−1

s Δr
4Δt )

nCR(t, r, p) = ∫ d3rs ∫ dtsG(t, r; ts, rs)Q(ts, rs, p)

nCR(t, p) =
Q⋆(p)

(4πtKiso)3/2
exp (−

Δr2

4tKiso ) λ2
diff ≃ ⟨r2⟩ = 6Kisot
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Quasi-Linear Approximation

• In the case of a strong background magnetic field and rapid gyration, 
the CR anisotropy is expected to align with .  


• We can evaluate the turbulence at the location of the gyrocenter.


• Ignoring any spatial gradient of the anisotropy, we then approximate 
the collision term as:


• For homogenous (and isotropic) turbulence we expect:


B0

( ∂f
∂t )

c
≃ − Li𝒟ijLj⟨ f ⟩

𝒟ij =
Ω2

B2
0 ∫

∞

0
dτCij(ezμβτ)e−iΩτLz
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• defintion and commutation relation:


• in spherical coordinates:


46

Sidenote : AM Operators

Lx = − i( − sin φ
∂
∂θ

− cot θ cos φ
∂

∂φ )

Ly = − i(cos φ
∂
∂θ

− cot θ sin φ
∂

∂φ )

Lz = − i
∂

∂φ

L2 = −
1

sin2 θ
∂2

∂φ2
+

1
sin θ

∂
∂θ (sin θ

∂
∂θ )

Li ≡ iϵijk pj
∂

∂pk
[Li, Lj] = iϵijkLk&
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Pitch-Angle Diffusion

• The product of angular momentum operators can be evaluated, e.g.


• If we assume that  is only a function of pitch-angle ( ):


• The pitch-angle diffusion coefficient can be written as:


• This expression has the expected resonance we discussed earlier:


⟨ f⟩ μ = cos θ

∂t ⟨ f ⟩ + vμ
∂

∂μ
⟨ f ⟩ ≃

∂
∂μ (Dμμ

∂
∂μ

⟨ f ⟩)

e−iΩτLzLx = (cos ΩτLx + sin ΩtLy)e−iΩτLz

ν∥ ∝ Dμμ ∝ Ω[k𝒫(k)]kres≃Ω/|μ|β ∝ Ω1/3 ∝ ℛ−1/3

Dμμ

1 − μ2
∝

Ω2

B0
2 ∫ d3k

𝒫(k)
4πk2

A( ̂k⊥, ̂k∥)∫
∞

0
dτ [ei(k∥μβ+Ω)τ + ei(k∥μβ−Ω)τ]
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Resonant Scattering

kmin kres kmax
wavenumber k

0.01

0.1

1

10

102
en

er
gy

de
ns
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Boron-to-Carbon Ratio
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FIG. 2: Charge of the Tracker L1 for a low contami-
nation Boron sample selected with in the Inner Tracker.
The charge distribution shows a large population of not-
interacting Boron events, as well as a population of higher
Z nuclei (C, N, O) that interacted in the upper part of
AMS giving emerging B fragments.

flux measurements. This determination relies in the
MC simulation of materials above L1, mainly support-
ing structures, and is validated by comparing the In-
ner Tracker charge distribution for Z = 6 events as
determined by the L1 in both data and MC [20]. This
irreducible background in the boron sample amounts
to 2% at 2 GV and increases up to 8% at 2.6 TV,
while for the carbon sample it is below 0.5% over the
entire rigidity range.
The bin-to-bin migration of events was corrected

using the unfolding procedure described in Ref. [22].

III. RESULTS

The Boron-to-Carbon ratio can be written as a ra-
tio of two isotropic flux �Z

i for the ith rigidity bin
(Ri, Ri +�Ri) as:

�Z
i =

NZ
i

AZ
i "

Z
i Ti�Ri

where NZ
i are the number of events corrected for

charge migrations inside the detector, for charge mi-
gration above L1 and for the rigidity resolution func-
tion. AZ

i is the geometric acceptance evaluated in
MC, "Zi is the byproduct of e�ciencies estimated di-
rectly from data, Ti is the collection time. With this
definition, the B/C ratio can be expressed as:

B/C =
�B

i

�C
i

=
NB

i

NC
i

·

AB

i "
B
i

AC
i "

C
i

��1

In the B/C ratios of e�ciency terms tends to can-
cel out since the interaction of Boron and Carbon
in matter are similar. The ratio of the e�ciencies
is estimated directly from data and includes the trig-
ger e�ciency, TOF e�ciency, tracking e�ciency, and
the e�ciency of finding hits on the external layers of
the Tracker. To validate the MC predictions, Boron
and Carbon event samples that cross the materials be-
tween L8 and L9 (Lower TOF and RICH) and reach
L9 without interacting are used. The fraction of sur-
viving events measured in data is compared with MC
calculations with Glauber-Gribov inelastic cross sec-
tions varied within ±10%. The resulting cross section
with the best agreement to data above 30 GV were
chosen [20].

The derived B/C ratio in the rigidity range between
1.9 GV to 2.6 TV is presented in Fig. 3 compared with
previous results [4–15]. Errors include both statistics
and systematics. The main source of error above 50
GV is due to the statistics of both the Boron and
Carbon samples, while systematics uncertainties ac-
count for charge migration inside AMS, charge mi-
gration above L1, rigidity migration, e�ciency and
acceptance ratio corrections.

To compare with previous result, published mostly
in kinetic energy per nucleon, the rigidity measure-
ment was converted into kinetic energy, the details of
such conversion can be found in Ref. [20].

[GeV/n]KE
1 10 210 310

B
/C
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FIG. 3: The boron to carbon ratio as a function of kinetic
energy per nucleon Ek compared with previous measure-
ments [4–15]. The dashed line is the B/C ratio required
for the model of Ref. [23].

IV. CONCLUSIONS

The light nuclei cosmic ray Boron to Carbon flux
ratio is very well known sensitive observable for the
understanding of the propagation of cosmic rays in
the Galaxy, being Boron a secondary product of spal-
lation on the interstellar medium of heavier primary

eConf C16-09-04.3

FB/FC ∝ E1/3
k

49

FB
FC

∝ τlossβngasσp→s
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Compton-Getting Effect
• PSD is Lorentz-invariant:


• relative motion of observer ( ) in plasma rest frame:


• Taylor expansion:


• dipole term  is not invariant:


• What is the plasma rest-frame? LSR or ISM : 


β = v/c

Φ

v ≃ 20 km/s

f(t, r, p) = f ⋆(t, r⋆, p⋆)

p⋆ = p + pβ + 𝒪(β2)

f(p) ≃ f ⋆(p) + pβ ∇p f ⋆(p) + 𝒪(β2)

ϕ = ϕ⋆ Φ = Φ⋆ +
1
3

β
∂ϕ⋆

∂ ln p
= Φ⋆ + (2 + Γ)β

Compton−Getting effect
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Summary : Dipole Anisotropy
• Spherical harmonics expansion of relative intensity:


• cosmic ray density  and dipole vector  from diffusion 
theory:


• diffusion tensor  in general anisotropic along background field :


• relative motion of the observer in the plasma rest frame ( ):


•

nCR ∝ E−Γ δ

K B

⋆

I(Ω) = 1 + δ ⋅ n(Ω) + ∑
ℓ≥2

m

∑
m=−ℓ

aℓmYℓm(Ω)

∂tnCR ≃ ∇(K∇nCR) + QCR

diffusion equation

δ ≃ 3K∇nCR/nCR

Fix′￼s law

Kij = κ∥B̂iB̂j + κ⊥(δij − B̂iB̂j) + κAϵijkB̂k

δ ≃ δ⋆ + (2 + Γ)β
[Compton & Getting '35]
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TeV-PeV Dipole AnisotropyTeV-PeV Dipole Anisotropy

• reconstructed di↵use dipole:

d? = d � (2 + GCR)b
| {z }

Compton-Getting

= 3K·rn?�n?

• projection onto equatorial plane: ‹

d?
EP = (d?

0h, d?
6h)

• strong regular magnetic fields in the
local environment

‹ di↵usion tensor reduces to projector:
[e.g. Mertsch & Funk’14; Schwadron et al.’14]

Kij ! kk
bBibBj

• TeV–PeV dipole data consistent with
magnetic field direction inferred by
IBEX data [McComas et al.’09]
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• CG-corrected dipole:


• projection onto equatorial plane:


• projection along strong regular 
magnetic fields:


• TeV-PeV dipole data consistent 
with magnetic field direction 
inferred from IBEX data.

δ⋆ ≃ δ − (2 + Γ)β = 3K∇nCR/nCR

δ⋆ → (δ⋆
0h, δ⋆

6h,0)

Kij ≃ κ∥B̂iB̂j

[Mertsch & Funk'14; Schwadron et al.'14]

[McComas et al.'09]
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Local Magnetic FieldLocal Magnetic Field

• IBEX ribbon: enhanced emission of
energetic neutral atoms (ENAs)
observed with Interstellar Boundary
EXplorer [McComas et al.’09]

• interpreted as local magnetic field
(. 0.1 pc) drapping the heliosphere

• circle center defines field orientation
(in Galactic coordinate system):

[Funsten et al.’13]

l ' 210.5� & b ' �57.1�

(Dq ' 1.5�)

• consistent with starlight polarization by
interstellar dust (. 40 pc) [Frisch et al.’15]

l ' 216.2� & b ' �49.0�

As an example of the detailed spectral
information provided by IBEX, Fig. 3 shows
the ENA energy spectra along LOSs toward the
two Voyager spacecraft. These spectra are nearly
straight power laws with slopes of ~1.5 (Voyager
1) and ~1.6 (Voyager 2). Globally, the spectra
generally show simple power laws near the equa-
tor with distinct enhancements at several keV at
higher latitudes (12), again consistent with higher-
energy PUIs in the high-latitude, fast solar wind.
IBEX observations are consistent with upper
bounds on ENA flux based on Ly-a absorption
(14). Claims of heliospheric ENA measurements
from ASPERA-3 (15) are inconsistent with
IBEX observations.

The discovery of the ribbon, not ordered by
ecliptic coordinates or the interstellar flow, requires
reconsideration of our fundamental concepts of
the heliosphere-LISM interaction. A possible ex-
planation could be based on the idea that the local
interstellar magnetic field plays a central role in
shaping the outer heliosphere. Figure 4 shows a
concept for the interaction where the external
dynamic and magnetic forces are comparable.
Here we depict the external field (16) wrapping
around and compressing the heliopause in a way
that pushes in the southern hemisphere (17)
enough to explain why Voyager 2 crossed the
TS ~10 AU closer to the Sun (10) than did
Voyager 1 (9), once the effects of the decreasing
solar wind dynamic pressure inside the TS (18)
are included (19). The ribbon closely matches
locations where a model (20) using this external
field orientation indicates that just outside the
heliopause, the field is transverse to IBEX’s radial-
viewing LOSs (21).

Several factors could contribute to the sub-
stantially enhanced emission in the ribbon, in-
cluding higher energetic ion intensities along the
LOS and pitch-angle distributions of ions that
preferentially emit radially inward. The combi-
nation of the external plasma dynamic (i.e., ram)
and magnetic (J × B) forces produces a localized
band of maximum total pressure around the helio-
pause, which is substantially offset from the
nose for a strong external field (21). Because
the suprathermal plasma observed in the inner
heliosheath is subsonic, information about the
enhanced pressure at the heliopause propagates
throughout the inner heliosheath, adjusting the
plasma properties and bulk flow and potentially
affecting the TS. Flows at the Voyager loca-
tions appear to be more directed away from the
ribbon than away from the nose. At Voyager 2
(22), south and offset from the nose meridian
(Fig. 1), in radial-tangential-normal (RTN) co-
ordinates, 〈VT〉 ~ +48 km s–1, whereas 〈VN〉 is
only ~ –14 km s–1. At Voyager 1, northward of
the nose, only VR and VT were measured (23),
but 〈VT〉 ~ –40 km s–1. Thus, the ribbon might
indicate the true region of highest pressure in
the inner heliosheath. If so, the location of the
ribbon divides inner heliosheath flows down
the two sides of the heliotail, analogous to a
continental divide; this may explain why VT is

several times VN at Voyager 2, as well as the large
transverse flow at Voyager 1.

If the pressure maximum is aligned with the
ribbon and the heliosheath flows are away from
it, then this represents the stagnation flow region,
where inside the heliopause the radial outflow
must go to zero. In this region, the plasma density
should maximize, producing copious ENAs that
would naturally map the region of maximum
pressure. This additional pressure might also ex-

trude a region of the heliopause, forming a
spatially limited outward bulge with high density
and little bulk flow. Because of the narrow
angular extent of the ribbon, it might be expected
that the emission region could be radially narrow
also, which would require magnetic or some
other sort of plasma confinement. Furthermore,
the spectral slope of the ribbon is similar to that
of the surrounding regions, which suggests that
this feature is not dominated by dynamical effects

Fig. 1. IBEX all-sky maps of measured ENA fluxes in Mollweide projections in ecliptic coordinates
(J2000), where the heliospheric nose is near the middle and the tail extends along both sides. The pixels
are 6° in spin phase (latitude), with widths (longitude) determined by the spacecraft pointing for different
orbits. Maps are shown in the spacecraft frame for passband central energies from IBEX-Hi of (A) 1.1 keV,
(C) 0.7 keV, (D) 1.7 keV, (E) 2.7 keV, and (F) 4.3 keV, and from IBEX-Lo of (G) 0.2 keV and (H) 0.9 keV.
Also shown in (A) is the galactic plane (red curve), which clearly does not coincide with the ribbon, as well
as directions toward Voyager 1 (V1) (35°, 255°), Voyager 2 (V2) (–32°, 289°), and the nose (5°, 255°).
(B) Magnified section of the ribbon where each 0.5° in spin phase is averaged with nearest neighbors to
reach 100 counts (10 counts standard deviation). Because of contamination of ENAs from Earth’s
magnetosphere, a small region on the right side of each map was not sampled in the first 6 months of
data; these regions have been filled in with average values from the adjacent areas and appear
unpixelated.
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(e.g., different energization processes at the TS or
elsewhere) but simply reflects the accumulation
of particles. Integration of our measured distri-

butions of ENAs over energy suggests that the
pressure in the ribbon is considerably higher than
in the rest of the sky (12); nonetheless, a region

only ~30 to 60 AU thick could still be in rough
pressure balance with the combined external dy-
namic and magnetic forces (21).

Another way to trap hot, inner-heliosheath
plasma in a relatively narrow structure might be
via large-scale, Rayleigh-Taylor–like instabilities
(24), which can be driven by neutrals and de-
stabilize the heliopause. Some models show
large, semicoherent structures with higher ion
densities and sizes greater than tens of AU,
moving tailward at <60 km/s along the helio-
pause (25). Magnetic reconnection across the
heliopause would also allow suprathermal helio-
sheath ions out into the cooler, denser outer
heliosheath, potentially confining them in narrow
structures. For any method that traps hot plasma
farther out beyond the heliopause, expected
higher densities of interstellar neutrals there would
also enhance ENA production.

Another possible ENA source is from outside
the heliopause, where compression of the exter-
nal field would both enhance densities and pro-
vide perpendicular heating to produce more
perpendicular ion pitch-angle distributions (21).
Such ions preferentially emit ENAs where the
LOS is transverse to the interstellar magnetic
field. A possible source of ENAs could be fast
neutrals emitted from the inner heliosheath,
which become ionized just outside the heliopause
and then reneutralize, emitting back inward pref-

Fig. 2. Skymap, in ecliptic coordinates,
of the average power-law spectral
slope (k) from ~0.5 to 6 keV using
IBEX-Hi channels 2 to 6. The mea-
surements were transformed into the
rest frame of the Sun; unlike Fig. 1,
the unsampled region is left black in
this image. Although statistical uncer-
tainty remains in individual 6° pixels,
global variations are clearly evident.

Fig. 3. Energy spectra for 20° × 20°
regions centered on the Voyager
1 (thick lines) and Voyager 2 (thin
lines) directions. Prelaunch cross-
calibration of the IBEX-Lo (red) and -Hi
(blue) sensors simultaneously in a single
chamber produces quantitativematching
between the spectra. Error bars show
counting statistics plus likely system-
atic errors of T20% for IBEX-Hi and
T30% for IBEX-Lo.

Fig. 4. Schematic diagrams of Parker’s limiting cases for the
heliospheric interaction (28). (A) “Hydrodynamic” interaction,
where the external dynamic forces >> magnetic forces. (B)
“Diamagnetic cavity” interaction, where the external magnetic
forces >> dynamic forces. (C) Schematic showing an intermediate
case, where the external magnetic and dynamic forces are
comparable. The measured flux at ~1.1 keV is superposed on the
heliopause; the ribbon appears to correlate with where the field is
most strongly curved around it.
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[McComas et al.’09]

Appendix

• IBEX ribbon: enhanced emission 
of energetic neutral atoms (ENAs) 
observed with the Interstellar 
Boundary EXplorer


• interpreted as local magnetic field 
( ) draping the heliophere 


• ribbon center defines field 
orientation (Galactic coordinates):


• consistent with field inferred from 
polarization of starlight by 
interstellar dust ( ):

≲ 0.1 pc

≲ 40 pc

l ≃ 216.2∘ & b ≃ − 49.0∘

l ≃ 210.5∘ & b ≃ − 57.1∘

[McComas et al.'09]

[Funsten et al.'13]

[Frisch et al.'15]

[McComas et al.'09]
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Known Local SNRsKnown Local Supernova Remnants

• projection maps source gradient
onto bB or �bB

‹ dipole phase a1 depends on
orientation of magnetic
hemispheres

• intersection of magnetic
equator with Galactic plane
defines two source groups:

120� . l . 300�
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�60� . l . 120�
! a1 ' 229�

45
±

315 ±

135 ±

22
5±

m
agnetic equator

Galactic Center

°9.5 °9.0 °8.5 °8.0 °7.5
x [kpc]

°1.0

°0.5

0.0

0.5

1.0

y
[k

pc
]

SN 185

S147

HB21
G65.3+5.7

Loop I

Vela

Monogem

Geminga

Cygnus Loop

Markus Ahlers (NBI, Copenhagen) Cosmic Ray Anisotropies and Composition October 22, 2021 slide 16

• projection along magnetic 
field leaves two possible 
dipole directions:


• Intersection of magnetic 
equator with Galactic 
Plane defines two regions 
where CR sources 
contribute to the dipole 
with opposite phases:


δ ∝ ± B̂0

120∘ ≤ l ≤ 300∘ → α1 ≃ 49∘

−60∘ ≤ l ≤ 120∘ → α1 ≃ 229∘
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Phase-Flip by Vela SNR?Phase-Flip by Vela SNR?

• 1–100 TeV phase indicates dominance
of a local source within longitudes:

120� . l . 300�

• plausible scenario: Vela SNR [MA’16]

• age : ' 11, 000 yrs

• distance : ' 1, 000 lyrs

• SNR rate : RSNR = 1/30 yr�1

• (e↵ective) isotropic di↵usion:

Kiso ' 4 ⇥ 1028(E/3GeV)1/3cm2/s

• Galactic half height : H ' 3 kpc

• instantaneous CR emission (Q?)
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• Observed 1-100 TeV phase 
indicates dominance of a local 
source with:


• plausible scenario: Vela SNR


• age: 


• distance: 


• SNR rate: 


• (effective) isotropic diffusion:


• Galactic halo width: 


• instantaneous CR emission 

≃ 11,000 yrs
≃ 1,000 lyrs
≃ 1/30 yr−1

≃ 3 kpc
Q⋆

120∘ ≤ l ≤ 300∘

Kiso ≃ 3 × 1028E1/3
GeVcm2/s
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Position of SNRPosition of SNR

Galactic

Loop I

Vela

Monogem

GemingaCygnus Loop
0.01.02.03.0Galactic Center

Relative Position of SNRs

Relative position of the five closest known SNRs. The magnetic field direction
(IBEX) is indicated by blue ⇥ and the magnetic horizon by a dashed line.
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Relative position of the five closest SNRs. The magnetic field direction 
(IBEX) is indicated by  and the magnetic equator by a dashed line.×
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Position of SNRPosition of SNR

Equatorial

Loop I
Vela

Monogem
Geminga

Cygnus Loop

0.01.0
2.0

3.0

Galactic Center

Relative Position of SNRs

Relative position of the five closest known SNRs. The magnetic field direction
(IBEX) is indicated by blue ⇥ and the magnetic horizon by a dashed line.
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Relative position of the five closest SNRs. The magnetic field direction 
(IBEX) is indicated by  and the magnetic equator by a dashed line.×
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Phase-Flip by Vela SNR?
Phase-Flip by Vela SNR

• 1–100 TeV phase indicates dominance
of a local source within longitudes:

120� . l . 300�

• plausible scenario: Vela SNR [MA’16]

• age : ' 11, 000 yrs

• distance : ' 1, 000 lyrs

• SNR rate : RSNR = 1/30 yr�1

• (e↵ective) isotropic di↵usion:

Kiso ' 4 ⇥ 1028(E/3GeV)1/3cm2/s

• Galactic half height : H ' 3 kpc

• instantaneous CR emission (Q?)
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• Observed 1-100 TeV phase 
indicates dominance of a local 
source with:


• plausible scenario: Vela SNR


• age: 


• distance: 


• SNR rate: 


• (effective) isotropic diffusion:


• Galactic halo width: 


• instantaneous CR emission 

≃ 11,000 yrs
≃ 1,000 lyrs
≃ 1/30 yr−1

≃ 3 kpc
Q⋆

120∘ ≤ l ≤ 300∘

Kiso ≃ 3 × 1028E1/3
GeVcm2/s
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Small-Scale Anisotropy
Small-Scale Anisotropy

• Significant TeV small-scale
anisotropies down to angular
scales of O(10) degrees.

• Strong local excess (“region A”)
observed by Northern
observatories.

[Tibet-ASg’06; Milagro’08]

[ARGO-YBJ’13; HAWC’14]

• Angular power spectra of IceCube
and HAWC data show excess
compared to isotropic arrival
directions. [IceCube’11; HAWC’14]

C` =
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2` + 1

`

Â
m=�`

|a`m|
2

10 HAWC Collaboration and IceCube Collaboration

(A)

(B)

Region A

Region B

Region A

Region B

HAWC FoV

IceCube FoV

HAWC FoV

HAWC FoV

IceCube FoV

HAWC FoV

Figure 5. (A) Relative intensity �Ia (Eq. 2) after subtracting the multipole fit from the large-scale map and (B) corresponding
signed statistical significance Si (Eq. 3) of the deviation from the average intensity in J2000 equatorial coordinates.

The angular power spectrum for the combined dataset
in Figure 7 provides an estimate of the significance of
structures at di�erent angular scales of ⇠ 180�/`. Biases
are substantially reduced with the likelihood method
and by eliminating degeneracy between multipole mo-
ments with a nearly full sky coverage. The angular
power spectrum can therefore be considered to be the
physics fingerprint of the observed 10 TeV anisotropy,
providing information about the propagation of cosmic
rays and the turbulent nature of the Local Interstellar
Magnetic Field (LIMF) (Giacinti & Sigl 2012; Ahlers &
Mertsch 2017). The large discrepancy between the com-
bined and individual datasets is the result of the limited
sky coverage by each experiment. This systematic e�ect
will be discussed in Section 7.2. A residual limitation in
this analysis is the fact that ground-based experiments
are generally not sensitive to the vertical component of

the anisotropy as discussed by Abeysekara et al. (2018b)
and Ahlers et al. (2016), as mentioned earlier.

The measured quadrupole component has an ampli-
tude of 6.8 ⇥ 10�4 and is inclined at 20.7 ± 0�.3 above
(and below) equatorial plane. As with the dipole, the fit-
ted quadrupole component from the spherical harmonic
expansion is also missing the m = 0 terms. However,
the combination of a21 and a22 non-vertical quadrupole
components can still provide valuable information. The
experimental determination of the vertical components
of the anisotropy would require accuracies better than
the amplitude of the anisotropy (⇠ 10�3). This be-
comes easier at ultra-high energies where a dipole of
much larger amplitude has been observed (Aab et al.
2017). The full-sky coverage also provides better con-
straints for fitting the ` = 2 and ` = 3 multipole com-

All-Sky Anisotropy of Cosmic Rays at 10 TeV 13

Figure 7. Angular power spectrum of the cosmic ray anisotropy at 10 TeV. The gray band represents the 90% confidence
level around the level of statistical fluctuations for isotropic sky maps. The noise level is dominated by limited statistics for
the portion of the sky observed by HAWC. The IceCube dataset alone has a lower noise level and is sensitive to higher �
components. The dark and light gray bands represent the power spectra for isotropic sky maps at the 68% and 95% confidence
levels respectively. The errors do not include systematic uncertainties from partial sky coverage.

Figure 8. One-dimensional R.A. projection of the relative
intensity of cosmic rays for adjacent � bins in the overlap re-
gion at -20� for HAWC and IceCube data. There is general
agreement for large scale structures. The two curves corre-
spond to di�erent � bands. The shaded bands correspond
to systematic uncertainties due to mis-reconstructed events,
derived from the relative intensity distributions in adjacent
decl. bands between �25� and �15�.

on Monte Carlo studies, the residual contribution solar
dipole that results from gaps in data taking is estimated
to be of order ⇠ 10�5 for the HAWC dataset, which
is smaller than the statistical error of this analysis. In
the case of IceCube, the detector has an uptime of 99%
(see Aartsen et al. (2017)) reduced to an uptime of
95.4% after selecting full sidereal days. As a result, the
systematic e�ect of data gaps is smaller (Abbasi et al.
2012).

In addition to variations caused by the anisotropy and
the solar dipole, there may also be local variations in
the detection of cosmic rays caused by changes in atmo-

Figure 9. Angular power spectrum as a function of sky
coverage for � = {1, 2, 3, 4}. The horizontal axis indicates
the maximum decl. �max, keeping �min = �90� for a dipole
injected horizontally in direction �6h. The partial coverage
of sky produces an artificial quadrupole and octupole that
decrease in power with greater celestial coverage.

spheric conditions, such as pressure and temperature,
and also by changes in the detector. For 10 TeV en-
ergies, HAWC is located below the shower maximum
Xmax for all primary masses. As a result, an increase
in pressure leads to an increase of the atmospheric over-
burden which results in an attenuation of shower sizes.
Atmospheric overburden is related to ground pressure p
as X0 = p/g, where g = 9.87 m s�2 is the local grav-
itational acceleration (Abbasi et al. 2013). In first or-
der approximation, the simple correlation between the

[IceCube & HAWC’18]

Markus Ahlers (NBI, Copenhagen) Cosmic Ray Anisotropies and Composition October 22, 2021 slide 20

• Significant TeV small-scale 
anisotropies down to angular 
scales of 


• Strong local excess (region A) 
observed by Northern 
observatories.


• Angular power spectra of 
IceCube and HAWC data show 
excess compared to isotropic 
arrival directions.

𝒪(10∘) .

Cℓ =
1

2ℓ + 1

ℓ

∑
m=−ℓ

|aℓm |2

[Tibet-AS '06; Milagro'08]γ
[ARGO-YBJ'13; HAWC'14]

[IC'11; HAWC'14]
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Influence of Heliosphere?
Small-Scale Anisotropies from Heliosphere?

courtesy S. T. Suess
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rL ≃ 200( ℛ
TV ) ( B

μG )
−1

AU
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Spherical Harmonics

Re(Yℓm(θ, φ))

ℓ = 0

ℓ = 1

ℓ = 2

x
y

z

ℓ = 3

…

monopole

dipole

quadrupole

octupole

Im(Yℓm(θ, φ))
m = 4 3 2 1 0 1 2 3 4

Yℓ0(θ, φ)

(Yℓm)* = (−1)mYℓ−m
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Angular Power Spectrum
• Every smooth function  on a sphere can be decomposed in terms of  

spherical harmonics :


• angular power spectrum:


• related to the two-point auto-correlation function:


• Note that power  is invariant under rotations (assuming  coverage).


g(θ, φ)
Yℓm(θ, φ)

Cℓ 4π

Cℓ =
1

2ℓ + 1

ℓ

∑
m=−ℓ

|aℓm |2

g(θ, φ) =
∞

∑
ℓ=0

aℓmYℓm(θ, φ) ↔ aℓm = ∫ d cos θ∫ dφY*ℓm(θ, φ)g(θ, φ)

ξ(η) =
1

8π2 ∫ dΩ1 ∫ dΩ2δ(n1 ⋅ n2 − cos η)g(Ω1)g(Ω2) =
1

4π

∞

∑
ℓ=0

(2ℓ + 1)CℓPℓ(cos η)
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Non-Uniform Pitch-Angle Diffusion
Non-Uniform Pitch-Angle Di↵usion

• stationary pitch-angle di↵usion (µ ⌘ cos q) :

vµ
∂

∂z
h f i =

∂

∂µ
Dµµ

∂

∂µ
h f i

• non-uniform di↵usion:

Dµµ

1 � µ2 6= const

• non-uniform pitch-angle di↵usion modifies
the large-scale anisotropy aligned with B0

• small scale excess/deficits for enhanced
di↵usion towards µ ' ±1

[Malkov, Diamond, Drury & Sagdeev’10]

• modified large-scale features for enhanced
di↵usion at µ ' 0 [Giacinti & Kirk’17]

‹ talk by G. Giacinti
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[Giacinti & Kirk’17]
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• stationary pitch-angle diffusion:


• non-uniform diffusion:


• non-uniform pitch-angle diffusion 
modifies the large-scale anisotropy 
aligned with background field


• small-scale excess/deficits for 
enhanced diffusion towards 


• large-scale features for enhanced 
diffusion at 

μ = ± 1

μ = 0

vμ
∂
∂z

⟨ f ⟩ =
∂

∂μ (Dμμ
∂

∂μ
⟨ f ⟩)

Dμμ

1 − μ2
≠ const

[Malkov et al.'10]

[Giacinti & Kirk'17]
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Anisotropy from Local Turbulence
Small-Scale Anisotropy from Local Turbulence

CMB temperature fluctuations Cosmic Ray Gradient

Local M
agnetic Turbulence

La
rg

e 
Sc
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e 
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e

small scale temperature fluctuations small scale anisotropies [Giacinti & Sigl’12]
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Small-Scale Theorem
• Assumptions:


• absence of CR sources and sinks


• isotropic and static magnetic turbulence


• initially, homogenous phase space distribution


• Theorem: The sum over the ensemble-averaged angular power spectrum is 
constant:


• Proof: by angular auto-correlation function.


• Wash-out of individual moments by diffusion (rate ) has to 
be compensated by generation of small-scale anisotropy.


• Theorem implies small-scale angular features from large-scale average dipole 
anisotropy.


νℓ ∝ L2 ∝ ℓ(ℓ + 1)

[MA'14]

[Giacinti & Sigl'12; MA'14; MA & Mertsch'15,'20]

∞

∑
ℓ=0

(2ℓ + 1)⟨Cℓ⟩ ∝ ⟨ξ(1)⟩ ∝ const
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Evolution Model
• Diffusion theory motivates that each  decays exponentially with an 

effective relaxation rate:


• A linear  evolution equation with partial rates  requires:


• For  and, initially,  this has an analytic solution:


• At large times we arrive at the asymptotic ratio:

⟨Cℓ⟩

⟨Cℓ⟩ νℓ→ℓ′￼

νℓ ≃ νℓ→ℓ+1 Cℓ(t = 0) = C1δℓ1

νℓ ≃ νL2 = νℓ(ℓ + 1)

∂t⟨Cℓ⟩ = − νℓ⟨Cℓ⟩ + ∑
ℓ′￼≥0

νℓ′￼→ℓ
2ℓ′￼+ 1
2ℓ + 1

⟨Cℓ′￼⟩ νℓ ≡ ∑
ℓ′￼≥0

νℓ→ℓ′￼

⟨Cℓ⟩(T ) =
3C1

2ℓ + 1

ℓ−1

∏
m=1

νm ∑
n

ℓ

∏
p=1(≠n)

e−Tνn

νp − νn

lim
T→∞

⟨Cℓ⟩(T )
⟨C1⟩(T )

≃
18

(2ℓ + 1)(ℓ + 2)(ℓ + 1)

with
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Comparison with DataComparison to CR Data

Anomalous Anisotropies of Cosmic Rays from Turbulent Magnetic Fields

Markus Ahlers
WIPAC & Department of Physics, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

The propagation of cosmic rays (CRs) in turbulent interstellar magnetic fields is typically de-
scribed as a spatial di�usion process. This formalism predicts only a small deviation from an
isotropic CR distribution in the form of a dipole in the direction of the CR density gradient or
relative background flow. We show that the existence of a global CR dipole moment necessarily
generates a spectrum of higher multipole moments in the local CR distribution. These anomalous
anisotropies are a direct consequence of Liouville’s theorem in the presence of a local turbulent
magnetic field. We show that the predictions of this model are in excellent agreement with the
observed power spectrum of multi-TeV CRs.

PACS numbers: 98.70.Sa, 96.50.S-, 98.35.Eg

Introduction.—The arrival directions of Galactic cos-
mic rays (CRs) are highly isotropic. This is expected
from a di�usive propagation of CRs in the interstellar
medium, where the e�ective scattering in turbulent mag-
netic fields randomizes the particle momenta over time.
Di�usion theory (including also convective and dissipa-
tive processes) provides an excellent description of Galac-
tic CR fluxes and their chemical abundances, e.g. [1].
In this framework the only deviation from an isotropic
CR arrival direction is in the form of a weak dipole
anisotropy. The phase and strength of this dipole is ex-
pected to be a combined e�ect of the relative motion of
the solar system with respect to the frame where CRs
are isotropic [2] and the density gradient of CRs in the
direction of their sources [3–5].

Cosmic ray anisotropies up to the level of one-per-mille
have been observed at various energies by the observa-
tories Tibet AS-� [6, 7], Super-Kamiokande [8], Mila-
gro [9, 10], ARGO-YBJ [11, 12], EAS-TOP [13], Ice-
Cube [14–16] and HAWC [17]. The explanation of the
strength and phase of the observed dipole anisotropy is
challenging, but is qualitatively consistent with the dif-
fusive prediction [4]. However, some of the observations
also show significant multi-TeV CR excesses at smaller
angular scales with unknown origin. In particular, a high
statistics sample of multi-TeV CRs seen by the IceCube
observatory [16] shows significant power in small-scale
multipole moments with ` . 20 as shown in Fig. 1.

It has been speculated that localized CR excesses can
be a combined e�ect of CR acceleration in nearby super-
nova remnants [18] and the local intergalactic magnetic
field structure introducing an energy-dependent mag-
netic mirror leakage [19] or preferred CR transport direc-
tions [20]. Magnetic reconnections in the heliotail [21],
non-isotropic particle transport in the heliosheath [22] or
the heliospheric electric field structure [23] have also been
considered as a source of these small-scale anisotropies.
Another variant considers the e�ect of magnetized out-
flow from old supernova remnants [24]. More exotic mod-
els invoke strangelet production in molecular clouds [25]
or in neutron stars [26].

In another recent paper [27] it was argued that the
local turbulent magnetic field configuration within a few
scattering lengths from the observer can induce higher
multipole moments in the CR arrival direction from the
existence of a large scale dipole moment. The authors
support this idea via numerical back-tracking of mono-
energetic CRs in a particular realization of random fields
using a global dipole moment as the initial value. This
elegant concept o�ers the possibility that the study of
higher multipole anisotropies can probe the structure of
the turbulent magnetic field.

However, a quantitative description of this mechanism
has so far not been available. A major challenge consists
of an accurate description of the transition region be-
tween the di�usive particle transport on large scales and
the local deterministic flow of particles where CR back-
tracking methods are applied. For the discussion of these
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FIG. 1: Angular power spectrum (black dots) at the 68%
confidence level measured with IceCube [16] at median energy
of 20 TeV compared to the model prediction (20) for �T =
0.1 (blue dotted) and �T = 1 (green dashed) as well as the
asymptotic value (21). We also show the power spectrum of
scrambled (i.e. isotropized) data from Ref. [16] (gray crosses).
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Cosmic Ray Backtracking
Simulation via Backtracking

- 0.10 - 0.05 0.00 0.05 0.10 - 0.3 - 0.2 - 0.1 0.0 0.1 0.2 0.3 - 1.0 - 0.5 0.0 0.5 1.0

Figure 12: Sketch of particle back-tracking in a turbulent magnetic field. For simplicity, we do not consider the presence

of a regular magnetic field. In that case, the CR back-tracking “flow” starts ballistic �T � 1 (left panel), remains laminar

for �T ' 1 (middle panel), and starts to become turbulent for �T � 1 (right panel).

a large scale anisotropy of the form

4�f(t � T, r(t � T ),p(t � T )) ' � + (ri(t � T ) � r�)·r� � 3bpi(t � T )·K·r� . (64)

In principle, the same technique can be applied to the case of small–scale anisotropies from local

turbulence. The appropriate choice of the back-tracking time T is here the effective scattering time-

scale 1/� of magnetic turbulence.

The formation of small–scale anisotropies can be understood in the following thought experiment:

Assume a homogeneous, but anisotropic dipolar state [124]. This means the phase–space density is the

same at every point in space, but its angular dependence is � (bp · �). We also assume, for simplicity,

that the magnetic field is dominated by turbulence. We now back–track particles from the observer for

a fixed amount of time T (see Fig. 12) and exploit Liouville’s theorem to compute the anisotropy map

from the set of trajectories and the assumed distribution. This is equivalent of preparing the system

into the initial state of the assumed distribution and then observing the anisotropy a time T later at

the position of the observer.

At early times, T� � 1, (cf. middle panel of Fig. 12) the back–tracked particles will have travelled

away from the observer only ballistically and the observed sky map will be the same as the assumed

dipole. However, as T� becomes larger (cf. middle panel of Fig. 12; the details depend on the scales and

strength of the turbulent field), the anisotropy map will show the first small–scale structures: Particles

will have travelled sufficiently far, that particles sent out back–tracking into very different directions

will have experienced different magnetic fields and their momenta will lose correlation. (Compare the

red with the blue trajectory in the middle panel of Fig. 12.) However, neighboring CRs (cf. the red and

orange trajectory) will have experienced similar magnetic configurations and their moment correlate

40

• Consider a local (quasi-)stationary solution of the di↵usion approximation:

4ph f i ' nCR + (r � 3 bp K)rnCR| {z }
1st order correction

• Ensemble-averaged C`’s (` � 1): [MA & Mertsch’15]

hC`i

4p
'

Z dp̂1
4p

Z dp̂2
4p

P`(p̂1p̂2) lim
T!•

hr1i(�T)r2j(�T)i
| {z }

relative di↵usion

∂inCR∂jnCR

n2
CR
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• Consider a local (quasi-)stationary solution of the diffusion approximation:


• Ensemble-averaged 's ( ) from backtacking:Cℓ ℓ ≤ 1

⟨ f ⟩ ≃ ϕ + (r − 3p̂K)∇ϕ

⟨Cℓ⟩
4π

≃ ∫
dp̂1

4π ∫
dp̂2

4π
Pℓ(p1p2) lim

T→∞
⟨r1i(−T )r2j(−T )⟩

∂ri
nCR∂rj

nCR

n2
CR

[MA & Mertsch'15]
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Cosmic Ray BacktrackingSimulation via Backtracking

• simulation in isotropic & static
magnetic turbulence with

dB2 = B2
0

• relative orientation of CR gradient:

• solid lines : B0 k rn
• dotted lines : B0 ? rn

• di↵usive regime at TW & 100

• enhanced dipole predicions:

hC1i > C1 for h f i

• asymptotically limited by simulation
noise:

N '
4p

Npix
2TKs

ij
∂in∂jn

n2

2

(4�f � n)/n is given as

1

4�
C1 =

����
Krn

n

����
2

. (3)

We will see in the following that this relation becomes
modified once we consider corrections of the PSD prod-
uct in the ensemble average. This will also introduce
multipoles at small angular scales, which can be related
to properties of relative di�usion.

We now study the e�ect of small local fluctuations of
the PSD around the ensemble average, �f = f � hfi.
According to Liouville’s theorem we can relate the local
(i.e., r = 0) PSD fi = f(0,0,pi) to the contribution
backtracked along CR trajectories to an arbitrary time,

4�fi ' 4��f(�T, ri(�T ),pi(�T ))

+ n + [ri(�T ) � 3p̂i(�T )K]rn , (4)

where n and rn denote the local CR density and gradi-
ent and ri(�T ) and pi(�T ) are the position and momen-
tum of a CR (that is at position ri = 0 and p̂i(0) = p̂i
at time t = 0) at backtracking time T . Now, in the
limit of large T the last term in Eq. (4) is dominated
by the third term scaling with the position of the par-
ticle. Also, for two momenta p1 6= p2 we can assume
that the ensemble average of fluctuations are uncorre-
lated, h�f1(�T )�f2(�T )i ' 0, for su�ciently large back-
tracking times when the CR trajectories eventually sep-
arate. In the degenerate case p1 = p2 the two back-
tracked CR trajectories stay correlated over arbitrarily
long backtracking times. It will be su�cient to assume
that h(�f(�T ))2i remains finite. We can then express
the multipole spectrum of the ensemble-averaged rela-
tive intensity as the limit

1

4�
hC�i '

Z
dp̂1

4�

Z
dp̂2

4�
P�(p̂1p̂2)

⇥ lim
T��

hr1i(�T )r2j(�T )i
�in�jn

n2
, (5)

�i being shorthand for �/�xi.
Note that the ` � 1 multipole spectrum is generated

through relative di�usion: it can be easily seen that the
sum over all ensemble-averaged multipoles of the relative
intensity can be expressed via the symmetric part of the
di�usion tensor hri(�T )rj(�T )i ! 2TKs

ij in the limit of
large backtracking times T ,

1

4�

�

��0

(2` + 1)hC�i(T ) ' 2TKs
ij

�in�jn

n2
. (6)

On the other hand, the average monopole contribution
in this limit can be expressed as

1

4�
hC0i(T ) ' 2T

�
Ks

ij � eKs
ij

� �in�jn

n2
, (7)

where the symmetric part of the relative di�usion tensor
is defined as

eKs
ij =

Z
dp̂1

4�

Z
dp̂2

4�

⇥ lim
T��

1

4T

�
�r12i(�T )�r12j(�T )

�
, (8)
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N (large-T noise)

Figure 1. Evolution of the ensemble-averaged power spectrum
(5) for a CR gradient parallel (solid lines) and perpendicular (dot-
ted lines) to the regular magnetic field and the 3D turbulence
model discussed in the main text. We show results in terms of
the dipole �C1� (black), monopole �C0� (blue), and medium-� mul-
tipoles (green). We also show the asymptotic noise level (9) (red)
and the dipole prediction (3) of standard di�usion (magenta) eval-
uated by the replacement �r1ir2j� � �r1i��r2j� in Eq. (5).

with �r12 ⌘ r1 � r2. Therefore, the sum of multipoles
` � 1 is related to the relative di�usion tensor. For un-
correlated particle trajectories, this expression reduces
to the normal di�usion tensor. However, particle tra-
jectories with a small relative opening angle will follow
similar trajectories and the relative contribution (8) re-
mains small over long timescales. Note that the multi-
poles in Eq. (5) are expected to be finite in the limit of
large backtracking times since particle trajectories with
arbitrarily small opening angles will eventually become
uncorrelated, hr1i(�T )r2j(�T )i ! 0.

3. SIMULATION

In the following, we will study the development of
small-scale anisotropies via numerical simulations (see
also Giacinti and Sigl (2012); Ahlers (2015); López-
Barquero (2015); Rettig (2015)). We follow the approach
of Giacalone and Jokipii (1999) and define a three-
dimensional (3D) turbulent magnetic field as the sum

�B(r) =
�N

n=1 �Bn cos(knr+�n) with N random phases
�n and wave vectors kn with 3D random orientations, on
top of a regular field B0. The wave vector amplitudes
kn range from kmin to kmax with equal logarithmic steps.
The vectors �Bn have 3D random orientations subject to
the conditions �Bn ? kn and |�Bn|

2
� k3

n/(1+ (knLc)�)
with a coherence scale Lc. We assume a Kolmogorov-
type phenomenology with � = 11/3 and the strength of

[MA & Mertsch’15]
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• simulation in isotropic & static 
magnetic turbulence with:


• relative orientation of CR gradient:


• solid lines : 


• dotted lines : 


• diffusive regime at  


• slightly enhanced dipole compared to 
standard diffusion


• asymptotically limited by simulation 
noise:

B0 ∥ ∇nCR

B0 ⊥ ∇nCR

TΩ ≳ 100

δB2 = B2
0

𝒩 ≃
4π

Npix
2TKij

∂inCR∂jnCR

n2
CR
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Simulation vs. DataSimulation vs. Data
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[MA & Mertsch’15]
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More UHE CR Anisotropies

Blind searches for overdensities
Search with little to no a priori : most prominent overdensity in the whole observable sky

Parameter space is scanned in
● Direction (R.A., Dec)
● Threshold energy Eth = {32, 80} EeV
● Top-Hat angular scale Ѱ

Largest significance post-trial 2.2σ
found at (RA, dec)=(196.3°, -46.6°) or (l, b)=(305.4°, 16.2°)
Nobs = 156 vs Nexp=98 at Eth 41 EeV and Ѱ=24°

[Auger Collaboration'22]

  evidence 
for small-scale 
feature

4σ
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More UHE CR Anisotropies

Blind searches for overdensities
Search with little to no a priori : most prominent overdensity in the whole observable sky

Parameter space is scanned in
● Direction (R.A., Dec)
● Threshold energy Eth = {32, 80} EeV
● Top-Hat angular scale Ѱ

Largest significance post-trial 2.2σ
found at (RA, dec)=(196.3°, -46.6°) or (l, b)=(305.4°, 16.2°)
Nobs = 156 vs Nexp=98 at Eth 41 EeV and Ѱ=24°

[Auger Collaboration'22]
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More UHE CR AnisotropiesComparing the sky models

13

All models capture the hotspot in the 
Centaurus region (M83+NGC4945+CenA)

The starburst model adds the “warm-spot” in the 
galactic south pole (NGC253)

Hotspot missing in the Virgo Cluster
(l,b) (280°, 75°) in the IR galaxies model

Direct comparison between models shows mild 
preference for including vs excluding SBGs (2-3σ)

[Auger Collaboration'22]
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⇥X(R, z) =

8
><

>:

tan�1
⇣

|z|
R�Rp

⌘
(R  R

c
X)

⇥0
X (R > R

c
X)

, (2.10)

and

Rp =

8
>><

>>:

RRc

X
Rc

X+|z|/ tan⇥0
X

(R  R
c
X)

R �
|z|

tan⇥0
X

(R > R
c
X)

, (2.11)

where the best-fits of the four free parameters have been determined in Ref. [19] to be
B

0
X = 4.6 µG, ⇥0

X = 49�, Rc
X = 4.8 kpc, and RX = 2.9 kpc. The role of this magnetic

field component is crucial in our setup, since it determines the progressively more and
more “vertical escape” (i.e., along z) of the CRs in the parallel direction as R decreases.
This feature will be indeed characterized by a harder scaling of the CR spectrum with
rigidity as R decreases.

In figure 1 we provide a three-dimensional visualization of the complete magnetic field
model described by eqs. (2.5)–(2.11).

Figure 1. Three-dimensional representation of the Galactic regular magnetic field model used in our
simulations and described by eqs. (2.5)–(2.11). The values of the vertical component, Bz, is shown
with colors on top of the magnetic field lines and as a contour plot on the z = 0 Galactic plane. Note
that the field lines in the plot are randomly selected and the plot is meant for illustrative purpose
only.

• Energy losses: As far as hadronic particles are concerned, in the energy range we are
considering the role of energy losses is negligible, as clearly shown e.g. in [31] (figure 1

– 6 –

75

Galactic Magnetic Field

[Cerri, Gaggero, Vittino, Evoli & Graso'17]
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Summary
A. Observation of CR anisotropies at the level of one-per-mille is challenging.


• large statistical and systematic uncertainties

• multipole analysis can introduce bias, sometimes not stated or corrected for


B. Dipole anisotropy can be understood in the context of diffusion theory.

• TV-PV dipole phase aligns with the local ordered magnetic field

• amplitude variations as a result of local sources

• plausible candidates are local SNRs, e.g. Vela 

• What is the expected dipole anisotropy in the PV-EV range?


C. Observed CR data shows also evidence for small-scale anisotropy.

• induces cross-talk with dipole anisotropy in limited field of view

• constitutes a probe of local magnetic turbulence

• What can we learn about our heliospher from TV small-scale features?

• What is the effect of local ( ) magnetic turbulence?

• How do we disentangle global CR transport features form local turbulence? 

≲ 10 pc
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Turbulence Simulation
Simulated Turbulence

• 3D-isotropic turbulence: [Giacalone & Jokipii’99]

dB(x) =
N

Â
n=1

A(kn)(an cos an + bn sin an) cos(knx + bn)

• an and bn are random phases in [0, 2p), unit vectors an µ kn ⇥ ez and bn µ kn ⇥ an

• with amplitude

A2(kn) =
2s2B2

0G(kn)

ÂN
n=1 G(kn)

with G(kn) = 4pk2
n

knDlnk
1 + (knLc)g

• Kolmogorov-type turbulence: g = 11/3
• N = 160 wavevectors kn with |kn| = kmine(n�1)Dlnk and Dlnk = ln(kmax/kmin)/N
• lmin = 0.01Lc and lmax = 100Lc [Fraschetti & Giacalone’12]

• rigidity: rL = 0.1Lc

• turbulence level: s2 = B2
0/hdB2i = 1

Appendix
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Local Sources
Local Sources

Figure 8. Anisotropy amplitude for ten random realizations of sources in the cylindrical model for
H = 1 kpc (left panel) and H = 2 kpc (right panel).

Figure 9. Phase of the anisotropy in a cylindrical model with H = 1 kpc (left panel) and H = 4 kpc
(right panel).

is dominated by the regular, large scale, distribution of the sources. In both cases, most
realizations lead to an anisotropy that mostly grows with energy. In other words, for large
values of H it becomes harder to explain the anisotropy signal observed at Earth. In this
sense, though not ruled out, large values of H appear to be disfavored. Interestingly enough,
in the case with H = 1 kpc, there are a few realizations that lead to an anisotropy which is
remarkably similar to the observed one.

The trend just described can be illustrated more clearly by using the phase of the
anisotropy vector, as plotted in Fig. 9 for a halo of size H = 1 kpc (left) and H = 4 kpc
(right). For small values of H the phase varies wildly reflecting the occasional dominance of
a nearby recent source. Again, this behavior is reminiscent of that found by the EASTOP
experiment [23], as discussed above. For H = 4 kpc the main contribution to anisotropy
comes from the inhomogeneous source distribution in the Galactic disc, and the energy
dependence of the phase of the anisotropy becomes much more regular, with an offset with
respect to zero that reflects the presence of some nearby source.

– 17 –

Figure 2. Anisotropy amplitude for ten random realizations of sources in the cylindrical model,
assuming δ = 1/3 and a SN rate R = 1/100 yr−1 (R = 1/30 yr−1) on the left (right). The halo
size is H = 4 kpc. The injection spectrum is assumed to have slope (below the cutoff) such that
γ + δ = 2.67. The data points are from [20–22].

impose that the slope γ of the injection spectrum is related to δ through γ + δ = 2.67, in
order to ensure a good fit to the CR spectrum at Earth (see Paper I). The red, staircase line
represents the average amplitude calculated using the 10 random realizations.

In all figures the (black) crosses, the (blue) diamonds and the (orange) stars are taken
from Ref. [20]. The (green) triangles are from EASTOP [21, 23] and the (red) squares are
the Akeno data points [22]. The oblique (red) lines at high energy show the upper limits on
the amplitude of anisotropy from KASCADE and GRANDE [24].

The comparison between the two panels shows that the spread in the anisotropy patterns
is not affected in a significant way by the SN rate. This can be qualitatively understood if
one considers that for H = 4 kpc, the anisotropy signal is already dominated by δA1 (see
§ 5). Looking at Eq. 3.5 one sees that the rate of Supernova explosions R only enters 〈JCR〉
(and the same is true for nCR) through the normalization of the probability distribution. It
is then clear that any dependence on R will disappear when δA1 is obtained as the ratio
between 〈JCR〉 and nCR. Both panels of Fig. 2 show very clearly the strong dependence
of the strength of anisotropy on the specific realization of source distribution, thereby also
disproving the naive expectation that the anisotropy should be a growing function of energy
with the same slope as the diffusion coefficient D(E). Whenever the small scale contribution
is not negligible, the observed anisotropy can in fact even be a non monotonic function of
energy, with dips and bumps, and with wide energy regions in which it is flat with energy,
quite like what the data show at energies E < 105 GeV. It is interesting however that none
of our realizations of the source distribution leads to anisotropies as low as the one suggested
by the data in the energy region 105 − 106 GeV (contributed by the EASTOP experiment).

Data in this region are in fact somewhat puzzling because they are so low as to suggest
that the Compton-Getting effect [25] leads to a level of anisotropy close to the lowest expected
limit. The Compton-Getting anisotropy is estimated to be between 3 × 10−4 and 10−3

depending on the velocity with which the Earth moves with respect to the rest-frame of the
CR scattering centers. This velocity is not known and the above estimates refer to a velocity
range from a minimum of ∼ 20 km/s to a maximum of ∼ 250 km/s, corresponding to the
motion of the solar system through the Galaxy [26]. It is clear that the measured anisotropy
between 105 and 106 GeV is only marginally consistent with a velocity of few tens of km/s

– 11 –

[Blasi & Amato’12]

• Distribution of local cosmic ray sources (SNR) in position and time induces
variation in the anisotropy. [Erlykin & Wolfendale’06; Blasi & Amato’12]

[Sveshnikova et al.’13; Pohl & Eichler’13]

• variance of amplitude can be estimated as: [Blasi & Amato’12]

sA µ
K(E)
cH

!
sA
A

= const

Appendix
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Local Magnetic Field
Local Magnetic Field

Solution to the Cosmic Ray Anisotropy Problem

Philipp Mertsch and Stefan Funk
Kavli Institute for Particle Astrophysics & Cosmology,

2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025, USA

In the standard di�usive picture for transport of cosmic rays (CRs), a gradient in the CR den-
sity induces a typically small, dipolar anisotropy in their arrival directions. This has been widely
advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV
and PeV energies exceeds the measured one by almost two orders of magnitude. Here, we critically
examine the validity of this prediction which is based on averaging over an ensemble of turbulent
magnetic fields. We focus (1) on the deviations of the dipole in a particular random realisation
from the ensemble average and (2) the possibility of a misalignment between the regular magnetic
field and the CR gradient. We find that if the field direction and the gradient direction are close
to � 90�, the dipole amplitude is considerably suppressed and can be reconciled with observations,
which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in
general does not coincide with the gradient direction, thus hampering the search for nearby sources.

Cosmic rays (CRs) with energies between hundreds of
MeV and at least a few PeV are commonly believed to
be of galactic origin. In the standard picture, the high
degree of isotropy in their arrival directions is interpreted
as evidence for di�usion as providing the necessary mech-
anism for e�ciently randomising their directions. On the
other hand, in the case of a not perfectly symmetric dis-
tribution of sources with respect to the observer, a small
degree of anisotropy, to first order a dipole in the arrival
direction of cosmic rays, is to be expected. In particular,
a (few) nearby source(s) can have a dominant e�ect on
the distribution of arrival directions which is why obser-
vation of a dipole anisotropy has been advertised as a
means of discovering these nearby sources [1–3]. Lately,
this idea has gained currency in the context of finding the
necessarily nearby (because of cooling losses) source(s)
of high-energy electrons and positrons [4–6] which is/are
causing the rise in the positron fraction [7–9].

Given the high degree of isotropy, a perturbative ap-
proach is adopted in CR transport models, expanding
the phase space density f(r,p, t) into an isotropic part
f0(r, p, t) and a small correction, f1(r,p, t). f1(r,p, t)
is then related to the gradients of f0(r, |p|, t), the mo-
mentum gradient leading to the well-known Compton-
Getting e�ect [10]; here, we focus on the spatial gradi-
ent. In a simple model of isotropic di�usion, the am-
plitude a of the dipole anisotropy, the relative di�erence
between the fluxes in the maximum and minimum direc-
tions, �max and �min, computes as [11]

a =
�max � �min

�max + �min
=

3D

v

|rf0|

f0
, (1)

where D is the (local) spatial di�usion coe�cient and
v � c is the CR speed. The dipole direction is opposite
to that of the CR gradient. For a given distribution of
sources and extrapolating the di�usion coe�cients mea-
sured through secondary-to-primary ratios like B/C at
GV to TV rigidities, one can first compute the CR den-
sity f0 and through eq. 1 the dipole amplitude. The

rigidity-dependence of the dipole amplitude results from
both D and |rf0|/f0.

Over the last decades, a large set of measurements of
the dipole anisotropy has been accumulated, at ener-
gies above a few TeV mostly from extensive airshower
arrays [13–23]. The dipole amplitude decreases from
⇠ 10�3 at 10 TeV to ⇠ 10�4 between 100TeV and 1PeV
before it increases again. Here we limit ourselves to en-
ergies below a few PeV where CRs are certainly of galac-
tic origin and where the composition is predominantly
p and He. We show these measurements together with
the prediction from a simple di�usion model in Fig. 1. It
is evident (as has been known for a while [24, 25]) that
the di�usion model overpredicts the dipole amplitude by
almost two orders of magnitude around 1 PeV.
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FIG. 1: The dipole anisotropy in the arrival directions of
CRs, as predicted by an isotropic di�usion model [12] (dotted
line) and measured by a variety of experiments [13–23]. The
black filled circles, connected by solid lines, mark the dipole
anisotropy predicted in five random realisations of the tur-
bulent magnetic field and assuming a misalignment between
background magnetic field and CR gradient close to 90�.
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FIG. 2: Sky map of dipole directions in 50 random realisa-
tions of the local turbulent magnetic field (� = 1) at 1 PV.
The centre and radius of each black circle shows the dipole
direction and amplitude in one random realisation, respec-
tively. The yellow star shows the direction of the assumed
CR gradient, the green diamond the predicted value from an
isotropic di�usion model and the red square the average of
the 50 magnetic field configurations.
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FIG. 3: The distribution of dipole amplitudes as a function
of the longitude of the CR gradient at 1 PV for � = 1. Each
vertical slice is the normalised histogram for a gradient di-
rection. We also show the median (orange dashed line), and
amplitude of the (vectorial) mean (red solid line), together
with the prediction for isotropic di�usion (green dashed line).
The cyan solid line and grey band show the KASCADE upper
limit and EAS-TOP measurement at � 1 PeV, respectively.

|a| = 10�3

|a| = 10�2

|a| = 10�1

�a�
aiso

�f0

B0

FIG. 4: Same as Fig. 2, but for a small turbulent field on top
of a regular field (� = 0.1), indicated by the blue cross.
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FIG. 5: Same as Fig. 3, but for a small turbulent field on top
of a regular field (� = 0.1).

anisotropy. A homogeneous distribution of dipoles at �T
leads not only to a dipole but also to power at smaller
multipole moments `, all of which are eventually decaying
exponentially with a time constant �sc/`(`+1) [29]. The
scenario we are most interested in here is an initial gra-
dient in the phase space distribution: After a few �sc, the
distribution of arrival directions converges, irrespective of
the initial angular distribution. We observe anisotropies
extending to the highest multipoles allowed by our an-
gular resolution which are eventually all powered by the
spatial gradient in the initial distribution function.

Every spatial distribution at times �T can be ex-

panded into a spatially homogeneous part, a gradient and
higher derivatives. We assume that the higher derivatives
are subdominant and adopt the (ensemble averaged) gra-
dient from the di�usion model. We read o� this gradi-
ent for the average source distribution from Fig. 2a of
Ref. [12] adopting their parametrisation of the di�usion
coe�cient measured from B/C.

We start by presenting our results for the case of
isotropic turbulence without a regular field, i.e. � = 1.
In Fig. 2, we show the dipole directions by the black cir-
cles, obtained for 50 random realisations of the magnetic
field, a CR gradient in (long, lat) = (90�, 0�) and 1 PV

[Mertsch & Funk’14]

• strong regular magnetic fields in the local environment

‹ di↵usion tensor reduces to projector: [e.g. Mertsch & Funk’14; Schwadron et al.’14; MA’17]

Kij ! kk
bBibBj

‹ reduced dipole amplitude and alignment with magnetic field: d k B

Appendix
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Rigidity Cutoff & East-West Effect

3.1 Basic observations

Figure 3.5: A sketch of the east-west effect [8].

Consider a particle of charge Ze with orbit in the equatorial plane of a dipole with magnetic
moment M (as a good model for the geomagnetic field). Equating the centrifugal and the
Lorentz force gives

Ze|v × B| =
mv2

r
(3.16)

with B = µ0/(4π)M/r3. The radius of the orbit is

r =
(

µ0

4π

ZeM

p

)1/2

. (3.17)

Setting r = R⊕ and using M = 8 × 1022 Am as magnetic moment of the Earth, it follows

p

Z
=

µ0

4π

eM

R2
⊕

≈ 59.6 GeV . (3.18)

This is the minimal momentum of a proton able to reach the Earth from the east, if its orbit
is exactly in the (magnetic) equatorial plane. The sign of this east-west asymmetry was used
by Rossi and others to show that the cosmic ray primaries are positively charged. Towards
the poles, the influence of the dipole field becomes weaker (v×B), and the cutoff momentum
becomes thus smaller. Thus the integrated cosmic ray intensity increases with latitude for
charged particles (“latitude effect”).

Compton-Getting effect Compton and Getting first discussed that a relative motion of
observer and cosmic ray sources results in an anisotropic cosmic ray flux, using this effect as
signature for the Galactic origin of cosmic rays with E >∼ 0.1 GeV.

Lorentz invariance2 requires that the phase space distribution function f in the frame of
the observer, f ′(r′,p′), equals the one in the frame in which the cosmic ray flux is isotropic,

2The differentials d3x and d3p transform opposite under Lorentz transformations, while the particle number
dN is obviously a scalar.

19

20 Will-be-set-by-IN-TECH

where theˆsymbol denotes units vectors and

R ≡ pc
Ze

(10)

is defined as the rigidity. The canonical aspect of the rigidity is evident in the above
equation. For a given magnetic field strength(B), charged particles with the same rigidity
follow identical trajectories.

Fig. 11. Global grid of quiescent vertical geomagnetic cutoff rigidities (GV) calculated from
charged particle trajectory simulations using the IGRF model for the 1996 epoch (solar cycle
23 minimum).

Motions of charged particles in a pure magnetic dipole field were examined by Störmer (1965).
Because of the azimuthal symmetry in a pure dipole field, the azimuthal angular momentum
is a conserved quantity. A main feature of Störmer theory is that regions of bounded and
unbounded motion can be derived analytically from the integral of motion found from the
conservation of azimuthal angular momentum (Störmer, 1965; VanAllen, 1968). It can be
shown that the minimum rigidity that a vertically arriving particle must have in order to
reach an altitude z above the Earth’s surface is

Rvc =
M

(Re + z)2 cos4 λm ≈ 15 cos4 λm (GV). (11)

In the above equation, Rvc designates the vertical geomagnetic cutoff rigidity, M is the Earth’s
magnetic dipole moment, Re is the average radius of the Earth, and λm denotes magnetic
latitude. Therefore, vertically arriving charged particles with energies (E) less than the cutoff
energy (Evc) will be deflected by the Lorentz force and not reach altitude z. The cutoff energy
for each charged particle of charge Z and mass number A is determined from the canonical

702 Current Topics in Ionizing Radiation Research• Rigidity cutoff: Low-rigidity cosmic rays can not enter the atmosphere from 
vertical direction (see plot).


• East-West effect: Close to the rigidity cutoff, cosmic rays with positive charge 
become first visible from the West (see graph).
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Cosmic Ray Data

AMS-02
ATIC-2
CREAM-I
BESS-Polar-II
PAMELA
Auger
CASA-Mia
EAS-TOP
GAMMA

HEGRA
HiRes-I
HiRes-II
IceTop
KASCADE
K-Grande
Tibet-III
TUNKA-Rex

knee

ankle

Cosmic Rays
• Cosmic rays (CRs) are energetic 

nuclei and (at a lower level) 
leptons.


• Spectrum follows a power-law 
over many orders of magnitude, 
indicating a non-thermal origin.


• Direct observation with satellite 
and balloon-borne experiments 
up to TeV energies (small 
detectors with good resolution 
for individual elements).


• Indirect observation as air 
showers above 10 TeV (large 
detectors with poor resolution).

1 particle per


m2 and second
1 particle per


m2 and year
1 particle per

km2 and year
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Conventions and Units

Electronvolt ???

10
6

eV = 1 MeV mec2 ' 1

2
MeV

10
9

eV = 1 GeV mpc2 ' 1 GeV

10
12

eV = 1 TeV
p

sLHC ' 7 TeV

10
15

eV = 1 PeV Emax,Earth ' 2 PeV

10
18

eV = 1 EeV Joule ' 6 EeV

10
21

eV = 1 ZeV ???

1V
e

Markus Ahlers (WIPAC) Astrophysics Research Madison, March 18, 2015 slide 14

Cosmic ray physics is tightly connected to the advent of particle physics. 


Unit of energy used in astroparticle physics: electron-Volt (eV)
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UHE CR Spectrum
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FIG. 5: Left Panel: The interaction and decay rates appearing in the Boltzmann equations for the CMB and CIB [60] at
z = 0. Right Panel: Star formation rate (Eq. (8) from Ref. [53]) and our approximation of the CIB number density scaling
with redshift (C2). For comparison, we also show the scaling behaviour of the CMB number density ∝ (1 + z)3.

The angular-averaged (differential) interaction rate Γi

(γij) appearing on the r.h.s. of Eq. (6) is defined as

Γi(z, Ei) =
1

2

1
∫

−1

dcθ

∫

dε (1− βcθ)nγ(z, ε)σ
tot
iγ , (A1)

γij(z, Ei, Ej) = Γi(z, Ei)
dNij

dEj
(Ei, Ej) , (A2)

where nγ(z, ε) is the energy distribution of background
photons at redshift z and dNij/dEj is the angular-
averaged distribution of particles j after interaction. For
photo-hadronic interactions this distribution can be de-
termined using the Monte Carlo package SOPHIA [40].
The factor 1−βcθ takes into account the relative motion
of photons and the nucleus, i.e. the Doppler shift of the
photon density.

We assume that the photon background has the adia-
batic scaling behaviour:

nγ(z, ε) = (1 + z)3 nγ(0, ε/(1 + z)) . (A3)

This is exact for the CMB (following from
Ẏγ = ∂E(HEYγ) and Yγ ∝ a3nγ), but not so for
the CIB. However, the dominant opacity for proton
propagation is provided by the CMB. The scaling
behaviour Eq. (A3) translates into the following scaling
of the quantities Γi and γij ,

Γi(z, Ei) = (1 + z)3 Γi(0, (1 + z)Ei) , (A4)

γij(z, Ei, Ej) = (1 + z)4 γij(0, (1 + z)Ei, (1 + z)Ej) .
(A5)

For the adopted scaling of the CIB see Appendix C.

If all interactions can be described as a CEL pro-
cess the differential equation (D2) is considerably sim-
plified and can be solved in a closed form as we will
show later. In general, any transition i → i which can
be approximated as γii(E,E′) ≈ δ(E − E′ −∆E)Γi(E)
with ∆E/E % 1 can be replaced in the Boltzmann equa-
tions (6) as

− Γ(E)Yi(E) +

∫

dE′ γii(E
′, E)Yi(E

′)

→ ∂E(biYi) , (A6)

with bi ≡ ∆E Γi ≈ −Ė. The production of electron-
positron pairs in the photon background with a small
energy loss is usually approximated as a CEL process.
Here we follow the standard approach of Ref. [61] to cal-
culate the proton energy losses in the photon background.
Again, the computation of the quantity b at various red-
shift is significantly simplified if we assume an adiabati-
cally scaling background photon density as for the CMB.
The scaling behaviour of b and its derivative β = ∂Eb is
then

bi(z, Ei) = (1 + z)2 bi(0, (1 + z)Ei) , (A7)

βi(z, Ei) = (1 + z)3 βi(0, (1 + z)Ei) . (A8)

As before, for the scaling of the infra-red background see
Appendix C. In the left panel of Fig. (5) we show the
quantities bpairp /E, βpair, Γp and H0 for comparison.
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Figure 30.9: Expanded view of the highest energy portion of the cosmic-ray spectrum from data of
the Pierre Auger Observatory [104] and the Telescope Array [105].

Cosmic rays above 5 ◊ 1019 eV are predominantly from nearby sources (< 100 Mpc). Auger
has reported the observation of a dipole of amplitude 6.6+1.2

≠0.8% for cosmic rays with energies above
8 ◊ 1018 eV. The direction of the dipole indicates an extragalactic origin for these particles [124].
There are also hints of structure at smaller angular scales. TA has reported a ‘hot spot’ in the
Northern Hemisphere at energies above 5.5 ◊ 1019 eV of radius ≥ 25¶ with a chance probability of
this excess with respect to an isotropic distribution of 2.1 ◊ 10≠3 [125]. Auger has also reported an
excess of events above 3.7 ◊ 1019 eV in a region near the radio-loud active galaxy Centaurus A with
a post-trial significance of 3.9‡, and a correlation of the distribution of ultrahigh energy events
with several catalogs of nearby astrophysical objects, with starburst galaxies giving the highest
significance at 4.5‡ [126].

30.6 Neutrinos at High Energies

Neutrinos are expected to be produced in hadronic interactions in a variety of astrophysical
objects. IceCube has reported a population of astrophysical neutrino events extending from tens
of TeV to beyond ten PeV [127, 136, 137]. Multimessenger observations of the flaring blazar TXS
0506+056 have identified this object as a high-energy neutrino source [138,139].

There is also expected to be a neutrino flux produced in cosmic ray GZK interactions. Mea-
suring this cosmogenic

4 neutrino flux above 1018 eV would help resolve the UHECR uncertainties
mentioned above. One half of the energy that UHECR protons lose in photoproduction interactions
that cause the GZK e�ects ends up in neutrinos [140]. Heavier nuclei produce lower energy neutrinos

4
Here we use cosmogenic to denote neutrinos produced by photoproduction during propagation, and astrophysical

to denote neutrinos produced by other mechanisms or close to sources.

1st June, 2020 8:29am

• UHE CR spectrum expected to show GZK cutoff due to interactions with 
cosmic microwave background.                [Greisen & Zatsepin'66; Kuzmin'66]


• resonant interactions  lead to  EeV


• UHE CR propagation limited to less than about 200 Mpc.

p + γCMB → Δ+ → X EGZK ≃ 40

UHE CR spectra
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UHE CR Composition
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FIG. 4: Fitted fraction and quality for the scenario of a complex mixture of protons, helium nuclei, nitrogen nuclei, and iron
nuclei. The upper panels show the species fractions and the lower panel shows the p-values.
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FIG. 4: Fitted fraction and quality for the scenario of a complex mixture of protons, helium nuclei, nitrogen nuclei, and iron
nuclei. The upper panels show the species fractions and the lower panel shows the p-values.

Composition of UHE CRs is uncertain; depends on details of CR interactions in atmosphere. 

85



Markus Ahlers (NBI) Cosmic Ray Anisotropy

Leaky-Box Model
1.2 Historical remarks

disc h = 300pc

!
Sun

8 kpc

gas/CR halo

globular clusters

Figure 1.2: Schematic picture of the Milky Way with a gas and dust disc, an extended halo
of gas and cosmic rays, surrounded by globular clusters. Everything is immersed
in a halo of dark matter.

1.2 Historical remarks

1912: Victor Hess discovered on a balloon flight that ionizing radiation increases with altitude.
As he wrote “The results of the present observations are most easily explained by the
assumption that radiation with very high penetrating power enters the atmosphere from
above; even in its lower layers, this radiation produces part of the ionization observed
in closed vessels. . . Since there was neither a decrease at night or during solar eclipse,
the Sun can hardly be considered as the source. . . ” [2].

1929: Skobelzyn observed first cosmic rays with a cloud chamber. Bothe and Kolhörster
showed that the tracks are curved by a magnetic field. This proved that the observed
cosmic rays on ground are charged particles—now we know that these are mainly muons
produced as secondaries in cosmic ray interactions in the higher atmosphere.

28/29: Clay observed the “latitude effect”: The cosmic ray intensity depends on the (geomag-
netic) latitude. Bothe and Kolhörster provided first the correct interpretation of this
effect as an anisotropy induced by the magnetic field of the Earth, providing in turn
evidence that (the primary) cosmic rays are charged.

1932: Anderson discovered the positron in cosmic rays. This was just the start for a series
of new particles detected in cosmic rays: The muon 1936 again by Andersen, charged
pions in 1947, and strange particles 1947–50.

1932: Raged debate in the US about sources and primary type of the new radiation. Millikan
and Compton favored gamma rays and coined therefore the name ”cosmic rays.”

1934: The sign of the east-west asymmetry showed that the cosmic ray primaries are positively
charged particles.

34/38: Rossi and independently Auger discovered through coincidence measurements ”exten-
sive air showers,” showers of secondary particles caused by the collision of high energy
cosmic rays with air nuclei.

7

86
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Leaky Box Model
Leaky-Box Approximation

• Cosmic ray diffusion in our Galaxy is mainly limited to a volume V that support
turbulent magnetic fields.

• The total number of CRs in this volume is given by the integral:

NCR(t, E) =
Z

V

dr n(t, r, E)

• In steady-state (∂tNCR = 0) the loss through the surface of the volume has to
balanced by the newly generated CRs from sources:

Z

∂V

dA? · K · rn =
Z

V

dr Q(t, r, E) = Qtot(t, E)

• In the “leaky-box” approximation, the loss is parametrized by an effective loss time:

NCR(E)
tloss(E)

'

Z

∂V

dA? · K · rn

• For diffusion coefficient K(E) µ E
d, the loss time scales as tloss(E) µ E

�d.
• If the source spectrum Qtot µ E

�a then the observed CR spectrum is:

NCR(E) ' tloss(E)Qtot(t, E) µ E
�a�d

Markus Ahlers (NBI, Copenhagen) Anisotropies of Galactic Cosmic Rays August 6, 2017 slide 21 87
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Galactic Cosmic Rays

88



Markus Ahlers (NBI) Cosmic Ray Anisotropy

General Transport Equation

89

∂ni

∂t
=

∂
∂ra (Kab

∂
∂rb

ni) (spatial diffusion)

+
∂

∂p [p2K̃
∂

∂p ( ni

p2 )] (momentum diffusion)

−
∂

∂ra (Vani) (convection)

−
∂

∂p ( ·pni −
p
3 ( ∂Va

∂ra )ni) (continuous & adiabatic loss)

− Γdec
i (Ei)ni (CR decay)

− cρISMσi(Ei)ni (loss from CR collisions)

+ cρISM ∑
j

∫ dEj
dσj→i

dEi
(Ej, Ei)nj(Ej) (gain from CR collisions)

+ Qi (source term)
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Relative Abundance of Elements

90

3 Galactic cosmic rays

(Z = 21 − 25) group are much more abundant in
cosmic rays than in the solar system. We explain
this later as a propagation effect: The elements
from the Li-Be-B group are produced as secondaries in cosmic rays interactions in the Galaxy.

Figure 3.2: Abundance of elements mea-
sured in cosmic rays compared
to the solar system abun-
dance, from Ref. [5].

Second, the spectra shown in Fig. 3.1 are above
a few GeV power-laws, practically without any
spectral features. The total cosmic ray spectrum
is

I(E) ∼ 1.8E−α particles

cm2 s st GeV
(3.5)

in the energy range from a few GeV to 100 TeV
with α ≈ 2.7. Around 1015 eV (the “knee”), the
slope steepens from α ≈ 2.7 to α ≈ 3.0. The spec-
trum above 1018 eV will be discussed in Chap-
ter 6.

The power-law form of the cosmic ray spec-
trum indicates that they are produced via non-
thermal processes, in contrast to all other radi-
ation sources like e.g. stars or (super-) novae
known until the 1950’s.

Third, small differences in the exponent α of
the power-law for different elements are visible:
The relative contribution of heavy elements increases with energy.

The kinetic energy density of cosmic rays is

ρCR =
∫

dE Ekn(E) = 4π
∫

dE
Ek

v
I(E) . (3.6)

Extrapolated outside the reach of the solar wind, it is

ρCR ≈ 0.8 eV/cm3 (3.7)

compared to the average energy density ρb ≈ 100 eV/cm3 of baryons in the Universe, of star
light ρlight ≈ 5 eV/cm3 in the disc, and in magnetic fields ρmag = 0.5 eV/cm3 for B = 6µG.
If the local value of ρCR would be representative for the Universe, 1% of the energy of all
baryons would be in the form of relativistic particles. This is rather unlikely and suggests
that cosmic rays are accumulated in the Galaxy.

Solar modulations When cosmic rays enter our Solar System, they must overcome the
outward-flowing solar wind. This wind impedes and slows the incoming cosmic rays, reducing
their energy and preventing the lowest energy ones from reaching the Earth. This effect is
known as solar modulation. The Sun has an 11-year activity cycle which is reflected in the
ability of the solar wind to modulate cosmic rays. As a result, the cosmic ray intensity at
Earth is anti-correlated with the level of solar activity, i.e., when solar activity is high and
there are lots of sunspots, the cosmic ray intensity at Earth is low, and vice versa.

Since the number of cosmic rays increases with decreasing energy, most cosmic rays are not
visible to us. This suppression effect at energies below a few GeV is clearly visible in Fig. 3.3,
where the intensity of oxygen is shown for three different periods.

16
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Secondary Cosmic Rays

• The abundance of cosmic rays in the Li-Be-B group (Z = 3 � 5) is larger than
expected from solar abundance measurements.

• We can understand this phenomenon by considering the production of secondary
cosmic rays (ns) in primary cosmic ray (np) collisions in background molecular gas:

∂tNs(E) = �
Ns(E)

tloss(E)
+ crsp!sNp(E)

• We can again look for the steady-state solution (∂tNp = 0 & ∂tNs = 0):
• The solution is

Ns(E) = tloss(E)crsp!sNp(E)

• The secondary-to-primary ratio is:

Ns(E)
Np(E)

= tloss(E)crsp!s µ E�d

Markus Ahlers (NBI, Copenhagen) Anisotropies of Galactic Cosmic Rays August 6, 2017 slide 22
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poloidal toroidal

The Astrophysical Journal, 781:8 (15pp), 2014 January 20 Sanchez, Fournier, & Aubert

Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.
(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
ability to capture the essentials of the solar dynamo process
questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.

The same critic was made regarding weather prediction dur-
ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may
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Figure 1. Illustration of the main processes at work in our solar dynamo model. The Ω-effect (left) depicts the transformation of a primary poloidal field into a
toroidal field by means of the differential rotation. The poloidal field regeneration is next accomplished either by the α-effect (top) and/or by the Babcock-Leighton
mechanism (bottom). In the α-effect case, the toroidal field at the base of the convection zone is subject to cyclonic turbulence. Secondary small-scale poloidal fields
are thereby created, and produce on average a new, large-scale, poloidal field. In the Babcock-Leighton mechanism, the primary process for poloidal field regeneration
is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
current one, which initiates a polarity reversal. The newly formed polar magnetic flux is transported by the meridional flow to the deeper layers of the convection zone,
thereby creating a new large-scale poloidal field.
(A color version of this figure is available in the online journal.)

of those equations governing the solar dynamo. Despite the
monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
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govern their time-dependency, such as the α-effect, make their
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questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.
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ing its early years. The seminal work by Lorenz (1963) showed
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a simple set of nonlinear coupled differential equations to its
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models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
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untractable.
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mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
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almost entirely concealed thick shell. Moreover, the physics of
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atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
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is the formation of sunspots at the solar surface from the rise of buoyant toroidal magnetic flux tubes from the base of the convection zone. The magnetic fields of
those sunspots nearest to the equator in each hemisphere diffuse and reconnect, while the field due to those sunspots closer to the poles has a polarity opposite to the
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are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
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the extreme sensitivity of a deterministic system governed by
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senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
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One may wonder to which extent the progress made by the
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almost entirely concealed thick shell. Moreover, the physics of
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monotonic and dramatic increase in compute power which
already led to substantial achievements (e.g., Brun et al. 2004;
Charbonneau & Smolarkiewicz 2013), such a comprehensive
integration remains out of reach due to the wide range of
temporal and spatial scales induced by the high level of
turbulence expected inside the solar convection zone. On the
other hand, and from a more practical perspective, a large body
of work has shown that axisymmetric mean-field solar dynamo
models were able to reproduce many of the observed features
of solar activity (Charbonneau 2005). The most recent and
representative illustrations of this strand rely on the advection
of magnetic flux by a meridional flow (following in general the
BL mechanism). These models, called “flux-transport” models,
are in particular successful in accounting for the equatorward
migration of the solar toroidal field and the observed phase-
locking of the solar cycle (Dikpati & Charbonneau 1999;
Charbonneau & Dikpati 2000).

Such flux-transport models may make it possible to predict
the amplitude and duration of the upcoming solar cycles. The
first studies addressing this possibility (Dikpati et al. 2006;
Choudhuri et al. 2007) considered direct incorporation of data
into models, essentially by imposing (in a strong sense) surface
boundary values inherited from the data onto the model, whereas
an assimilation scheme would require this to happen in a weak
sense, through some flavor of the so-called best linear unbiased
estimator, whose goal is to combine in an optimal fashion the
data and the model, considering the uncertainties affecting both.
Independently of the data assimilation scheme one may resort
to, and as good as it may be, there exists an intrinsic limit to
its predictive power. Bushby & Tobias (2007) point out that this
limit arises either from the stochastic nature of the BL and
α-effects, or from nonlinear deterministic processes. They
stress, in addition, that the lack of constraints on the exact nature
of the key physical mechanisms which sustain these models and

govern their time-dependency, such as the α-effect, make their
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questionable. They conclude that under the best circumstances
of a near-perfect model, the shape of the solar cycle could only
be predicted one or two cycles ahead. As this best case scenario
is out of reach, they argue that a reliable forecasting exercise is
untractable.
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ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
dynamo is faithfully captured by mean-field models, one may
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is out of reach, they argue that a reliable forecasting exercise is
untractable.
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ing its early years. The seminal work by Lorenz (1963) showed
the extreme sensitivity of a deterministic system governed by
a simple set of nonlinear coupled differential equations to its
initial conditions. In a subsequent study, Lorenz (1965) esti-
mated the timescale of divergence τ of two initially very close
dynamical trajectories (called twin trajectories in the following)
to be of a few days (Lorenz’s simple model aimed at repre-
senting atmospheric convection). More realistic models of the
atmosphere have now established that τ is equal to two weeks.
This value has to be confronted with the current forecast hori-
zon of NWP, which is (depending on the center) between seven
and nine days. The combined progress of observation, models,
and data assimilation algorithms over the past 30 yr has resulted
roughly in a gain of one day per decade, bringing the operational
limit closer and closer to the theoretical limit.

One may wonder to which extent the progress made by the
atmospheric community could be expected within the solar
community. Doing so, one immediately realizes that these
two dynamical systems (the atmosphere and the Sun) are
dramatically different. Whereas the Earth’s atmosphere is a thin
and directly observable layer, the solar convection zone is an
almost entirely concealed thick shell. Moreover, the physics of
the atmosphere is much better constrained than that at work
behind the solar dynamo (consult Vallis 2006 for a review of
atmospheric processes). Bearing these substantial differences in
mind, and assuming that the basic physics involved in the solar
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M. S. Potgieter and E. E. Vos: Heliospheric modulation of cosmic-ray protons and electrons

Fig. 1. A very local interstellar spectrum for galactic protons (black
line) and for galactic electrons (grey line), specified in the model as
unmodulated input spectra at the boundary (122 AU) of the simulated
heliosphere. These spectra were constructed by combining PAMELA
(red circles) and AMS-02 (blue circles) measurements at the Earth
above 30 GeV (grey shaded band), and Voyager 1 measurements below
⇠600 MeV taken from beyond the HP (diamonds and crosses). Refer-
ences to the observations are given in the text.

Figure 1 shows the mentioned Voyager 1, PAMELA and
AMS-02 observations overlaid by the newly constructed pro-
ton VLIS (black line) and electron VLIS (grey line). The shaded
band above 30 GeV represents the region where modulation ef-
fects can be neglected and where these VLIS are normalised to
the measurements. The Voyager 1 electron measurements be-
low ⇠40 MeV are based on response functions derived from
GEANT 4 simulations (green crosses), indicating an E

�1.35 spec-
tral index that is used for this work (see also the discussions
by Stone et al. 2013; Bisscho↵ & Potgieter 2014; Potgieter et al.
2015; Nndanganeni & Potgieter 2016; Corti et al. 2016).

Mathematical expressions for the VLIS for protons and elec-
trons are given, respectively, by

Jp = 2.70
E

1.12

�2

 
E + 0.67

1.67

!�3.93

, (1)

and

Je� =
0.21 E

�1.35

�2

 
E

1.65 + 0.6920
1.6920

!�1.1515

+ Jbump, (2)

with

Jbump = 1.73 exp
⇣
4.19 � 5.40 log E � 8.9 E

�0.64
⌘
, (3)

where E is the kinetic energy in GeV, � the ratio of CR particle
speed relative to the speed of light, and j = P

2
f is the di↵erential

intensity in units of particles m�2 sr�1 s�1 MeV�1, with f (r, P, t),
the galactic CR distribution function at a vector position r (spec-
ified in 3D by heliocentric coordinates r, ✓ and �) for a given
rigidity P (in GV) and time t. The incorporation of the “bump”
in the VLIS for electrons between 5 and 15 GeV, which is hardly
visible in Fig. 1, was discussed at length by Potgieter (2014b)
and Potgieter et al. (2015). It does not change the conclusions of

the work reported here, but it does a↵ect the values of the dif-
fusion coe�cients that are needed for electrons in the model to
reproduce the observed spectra in this particular energy range.

2.2. Numerical modulation model

A full 3D modulation model is used to compute modulated dif-
ferential intensities throughout the heliosphere. It is based on the
numerical solution of the heliospheric transport equation from
Parker (1965):

@ f

@t
= � (V + huAi) · r f + r · (Ks · r f ) +

1
3

(r · V)
@ f

@ ln P
, (4)

with f , t and P as before. For calculating steady-state solutions,
as was done for this study, the term @ f /@t is set to zero, which
is a reasonable assumption for modulation during solar mini-
mum when modulation parameters change gradually. The terms
on the right-hand side respectively represent convection, with
V the solar wind (SW) velocity, averaged particle drift veloc-
ity huAi caused by gradients, curvatures, and HCS drifts in the
global HMF, di↵usion, with KS the symmetric di↵usion tensor,
and adiabatic cooling. For solar minimum activity, the magni-
tude of V is assumed to have a strong latitudinal dependence as
described in detail by Potgieter et al. (2014); we refer to their
Equation 12, which also contains the decrease of V across the
termination shock into the heliosheath. The acceleration e↵ects
of the termination shock as well as any energy gain process
inside the heliosheath are neglected for the galactic CRs con-
sidered here; for discussions of such possible e↵ects, we refer
to Langner et al. (2006), Giacalone et al. (2012), le Roux et al.
(2016) and Prinsloo et al. (2017), for example. However, the
modulation e↵ect of the heliosheath has been incorporated con-
sistently through the expressions for the di↵usion coe�cients.
The specifics of how this is done are described in detail by
Potgieter et al. (2014, 2015); an explanation of how represen-
tative values for the HCS tilt angle (↵) and the HMF at the
Earth (Be) are calculated for the period 2006 to 2009 is also
provided. Illustrations of the global latitudinal and radial pro-
ton intensity gradients, for the latter from the Earth up to the
heliopause, based on these assumptions and the model presented
here, are shown and discussed by Vos & Potgieter (2016). Cos-
mic ray modulation beyond the heliopause is not considered;
for the details of such an approach, we refer to, for example,
Luo et al. (2016) and references therein.

2.3. Diffusion and drift coefficients

Figure 2 shows the rigidity dependence of the parallel (�k) and
perpendicular (�?) mean-free paths (MFPs), along with the drift
scale (�A), for protons (top panel) and electrons (bottom panel),
from the second half of 2006 (indicated as 2006b) to the sec-
ond half of 2009 (indicated as 2009b). Similar to Potgieter et al.
(2014, 2015), it was found that the changes in particle MFPs
and the drift scale shown in the figure were required to repro-
duce proton and electron spectra measured by PAMELA in de-
tail, as shown and discussed later in this article. These changes
include the combined contribution of the yearly weakening aver-
age HMF magnitude and the temporal development of ↵, as well
as additional MFP increases that changes in ↵ and Be could not
account for.

The di↵usion coe�cients (DCs; ) are related to the particle
MFPs (�) through  = �(v/3), with v, the particle speed. A gen-
eral expression for the MFP parallel to the average background
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• Voyager satellite observes 
proton & electron spectra 
in local interstellar 
medium (LIS): no solar 
effect


PAMELA 2006-2009           
solar minimum


AMS-02 2011-2013            
solar maximum


• Effect can be treated via a 
force field approximation 
corresponding to a solar 
potential. [Potgieter & Vos, A&A 2017]

solar 

effect
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