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Introduction

• Blazars are AGN’s with a jet oriented along the line of sight.

• Some population of blazars (BL Lacs, in particular) shows an intense

emission γ-ray at TeV energies.

• Along with the primary TeV emmision we expected to detect an

electromagnetic cascade in the GeV energy band due to the

attenuation in the IGM:
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The electromagnetic cascade is missing in the observations

• Some of the

observed blazars

arriving energy

fluxes in the GeV

band are under

the predicted

flux from the full

electromagnetic

cascade.

Neronov and Vovk

(2010)
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First possible explanation

• Deflection by the IGM magnetic fields.

Neronov and Vovk (2010) Taylor et al. (2011)
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1ES 0229+200 and IGMF

Vovk et al. (2012) 4



Second possible explanation

• Energy loss due to the Beam-plasma instabilities.

ωi ∼ 10−7Sec−1 Waves evolution−−−−−−−−−→ τloss ∼ 1012Sec << τIC ∼ 1013Sec

Broderick et al. (2012) Brejzman and Ryutov (1974)
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The question

• The plasma instability was calculated neglecting the IGM

magnetic fields. How the IGM magnetic fields will impact the

instability if it were there?

Artwork by Sandbox Studio, Chicago 6



Weak Intergalactic Magnetic Fields effect on the Linear Growth

Rate of Electrostatic Instability

• The intergalactic magnetic fields cause stochastic deflections of the

electrons and positrons increasing the angular distribution function

of the pair beam as a Gaussian with the angler spread
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Weak Intergalactic Magnetic Fields effect on the Linear Growth

Rate of Electrostatic Instability

• This angular spread slows down the linear growth rate of the

instability

ωi (k) = ωp
2π2e2

k2

∫
d3p

(
k · ∂f

∂p

)
δ(ωp − k · v).

• Lower instability growth rate yields longer energy loss time of the

instability

τ−1
loss = 2δωi,max,

where δ = UES/Ubeam is the normalized wave energy density at the

equilibrium level.
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Strong reduction of the instability growth rate peak with IGMF
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Plasma instability limit compared to the time delay limit

Alawashra and Pohl (2022)

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

-11 -10 -9 -8 -7 -6 -5 -4 -3

lo
g 1

0
(B

I
G
M
[G

au
ss
])

log10(λB [Mpc])

MHD turbulent decay
Excluded region (this work)

Fermi (2018) lower limit
τloss= τIC

10



Summary

• Weak intergalactic magnetic fields slow down the linear electrostatic

instability.

• This suppression is effective for fields a factor of a thousand weaker

than those needed for magnetic deflection of the cascade emission.

• Back-reaction of the instability on the pair beam still unclear, but it

may include widening of the beam which also could suppress the

instability (See Perry and Lyubarsky (2021)).
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Pair beam particle distribution

• Primary VHE gamma-rays:

dN/dE ∼ E−1.8.

• EBL at z =0.2 from Finke et

al (2010).

• Pair spectrum at 50 Mpc

from the source:

• Angular spread:

fb(p, θ) = fb,p(p)fb,θ(p, θ),

fb,θ(p, θ) ≈ 1
π∆θs

exp
{
− θ2

∆θ2
s

}
,

∆θs ≈ mec
p

Vafin et al. (2018)
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Pair-Beam parameters

• Total pair-beam particles density at 50 Mpc: nb = 3× 10−22cm−3.

• Pair-beam mean Lorentz factor at 50 Mpc: γb = 4× 106.

• The IGM plasma density: ne = 10−7(1 + z)3cm−3.

• The IGM temperature: Te = 104 K.
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Linear growth rate of electrostatic instability for a blazar in-

duced beam

• The linear electrostatic

growth rate is the key

quantity of the plasma

instability (Brejzman

and Ryutov, 1974):

ωi (k⃗) =ωp
2π2e2

k2

∫
d3p

×
(
k⃗.
∂f

∂p⃗

)
δ(ωp − k⃗ .v⃗).

• Maximum growth rate:

ω−1
i,max ≈ 107 Sec.

• Inverse Compton

scattering ∼ 1013 Sec.

Vafin et al. (2018)
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Back-reaction on the pair beam

• The back-reaction is given by the diffusion equation

∂f (p, θ)

∂t
=

1

p2 sin θ

∂

∂θ

(
sin θDθθ

∂f

∂θ

)
+

1

p sin θ

∂

∂θ

(
sin θDθp

∂f

∂p

)
+

1

p2

∂

∂p

(
pDθp

∂f

∂θ

)
+

1

p2

∂

∂p

(
p2Dpp

∂f

∂p

)
,

(1)

where the resonant momentum-diffusion tensor defined by

Dαβ = πe2
∫

d3kW (k, t)
kαkβ

k2
δ(k · v − ωp), (2)

where kα is the wavenumber projection to the α component of the

beam, for example, kp = k and

kθ = k · θ̂ = k[sin θ′ cos θ cosφ′ − cos θ′ sin θ].

• Perry and Lyubarsky (2021) solved only the first part of the right

hand side of this equation.
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Perry and Lyubarsky (2021) result

• Perry and Lyubarsky (2021) used the approximation

1

p2 sin θ

∂

∂θ

(
sin θDθθ

∂f

∂θ

)
∼

(
θ′

∆θ

)2

1

p sin θ

∂

∂θ

(
sin θDθp

∂f

∂p

)
∼

(
θ′

∆θ

)
1

p2

∂

∂p

(
pDθp

∂f

∂θ

)
∼

(
θ′

∆θ

)
1

p2

∂

∂p

(
p2Dpp

∂f

∂p

)
∼ 1

(3)

where the intergalactic beam is narrow ∆θ ∼ 10−5 and the beam energy spread
is large ∆p ∼ p. θ′ is the angle of the waves propagation, they consider only
θ′ ∼ 1.

• Scattering is stronger than the energy loss, scattering suppresses the
instability energy loss.

• Will the argument hold if we include θ′ << 1?
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