What have we learned from the Pierre Auger Observatory for future UHECR observatories

Ralph Engel, for the Pierre Auger Collaboration

(picture curtesy S. Saffi)

Most important research goals

- Identification of sources and/or source regions
- Determination of acceleration (or other) mechanism to produce particles of extreme energies
- Study of astrophysics of source objects/regions
- Investigation of cosmic ray propagation
- Multi-messenger studies (neutrinos, gamma-rays)
- Input for prediction of secondary particle fluxes
- Measurement of or placing limits on magnetic fields
 - in clusters and filaments
 - in intergalactic regions and voids
 - in our Galaxy
- Study of fundamental physics under extreme conditions such as space-time structure (LIV) - Study of shower physics and hadronic interactions at extreme energies
- Multi-purpose applications: atmospheric physics, geophysics

Source identification of UHECRs

Source identification of UHECRs

Typical propagation distances and secondaries

(Bergmann et al., PLB 2006)

Complementarity of UHE cosmic rays and neutrinos

Neutrinos (transient events)

(Ahlers & Halzen, PTEP 2017)

Baseline procedure to make progress

- Flux of particles
- Mass composition
- Arrival direction distribution
- Secondary particles and multi-messenger observations
- Air shower measurements
- Atmospheric phenomena and geophysics

The Pierre Auger Observatory

Pierre Auger Observatory Province Mendoza, Argentina

High elevation telescopes

More than 400 members, 98 institutes, 17 countries

Southern hemisphere: Malargue, Province Mendoza, Argentina

Pierre Auger Observatory and Telescope Array

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory Province Mendoza, Argentina

1660 detector stations, 3000 km² 27 fluorescence telescopes

1. Energy spectrum – Auger results

- SD 1500m $\theta < 60$ degrees
- SD 1500m 0 > 60 degrees
- v hybrid
- &3))*)#4*11777
- Cherenkov

Very consistent measurements Suppression by factor ~100 Non-trivial shape (inflection point)

0%

Combined energy spectrum

	Exposure [km ² sr yr]	Ev
SD1500 (9 <60º)	60426	21
SD1500 (9 >60º)	17447	24
SD750	105.4	569
Hybrids	2248 (10 ¹⁹ eV)	13
Cherenkov	286 (10 ¹⁷ eV)	69

Stat. uncertainty very small Sys. uncertainty dominating

11

Comparison of energy spectra of Auger and TA

Auger
$$\Delta E/E = 14\%$$
TA $\Delta E/E = 21\%$

Declination dependence in range accessible by Auger

(Auger, Phys. Rev. Lett. 125 (2020) 121106 & Phys. Rev. D. 102 (2020) 062005)

Declination dependence also seen in Auger data, but much smaller Imprint of differences of local source distribution?

2. Mass composition – Auger fluorescence data

(Auger ICRC 2019)

14

Change of model predictions thanks to LHC data

pre-LHC models

(see also discussion Lipari, Phys.Rev.D 103 (2021) 103009)

post-LHC models

(Pierog, ICRC 2017)

LHC-tuned models should be used for data interpretation

Mass composition – data analysis

Comparison of Xmax data of Auger and TA

17

Interpretation of flux and composition data

(Auger, ICRC 2019)

Auger 2007

CR abundance is same as low energy Galactic components

19

3. Arrival direction distribution

Different exposures and energy scales of Auger Observatory and Telescope Array

$$E > 10^{19} \,\mathrm{eV}$$

After unification of energy scales in overlap region:

No anisotropy found in 2014

Pierre Auger and TA Collaborations, ApJ 794 (2014) 2, 172

Arrival directions – Auger results on large angular scales

Normalized rates

Arrival directions – Auger results on large angular scales

6.5% dipole at 5.2 sigma Science 357 (2017) 1266

Energy-dependence of amplitude (ApJ 2018)

Dipolar anisotropy – interpretation

Energy-dependence of amplitude and direction

2MRS × Globus, N., Piran, T. 2017, ApJL, 850, L25 Hackstein, S., et al. 2016, MNRAS, 462, 3660 Hackstein, \$., et al. 2018, MNRAS, 475, 2519 Harari, D., Möllerach, S., Roulet, E. 2010, JCAP, 11 033 Harari, D./Mollerach, S., Roulet, E. 2014, PRD, 89, 123001 Harari, D., Mollerach, S., Roulet, E. 2015, PRD, 92, 063014

Extensive theoretical work (prediction and^{9} interpretation)

(Ding, Globus & Farrar 2101.04564)

Non-trivial interplay of mass composition, mag. horizon and **local source distribution**

Arrival directions – catalog searches

Total exposure: **101,400 km² sr yr**

(Auger Astrophys. J.2018, ICRC 2019)

Catalog searches – outlook

(Auger, ICRC 2019)

General prospects for finding sources

(Alves Batista et al, MIAPP review, 1903.06714)

Higher energy: mean deflection similar, but reduced source volume

Accounting for magnetic field deflection needed

backtracking through magnetic field model variations at different rigidities R = E/Z

MU&G. Farrar ICRC2017, arXiv:1707.02339

Average rigidity derived from Auger data

4. Multi-messenger physics – early Auger results

Integral photon flux limit

(Auger, Astropart. Phys 2007, 2008)

Neutrino flux limit

(Auger, Phys. Rev. Lett. 2008)

4. Multi-messenger physics – Auger results today

Limits have reached GZK predictions for protons

(Auger ICRC 2019)

(Auger JCAP 2019)

Waiting for the first EHE neutrino (background-free)...

Expected number of events

(Auger, UHECR 2018)

Effective neutrino aperture

Multi-messenger physics – transient even

ApJL (2017), special issue (70 collaborations)

()°

 10^{8}

prompt

Fang &

Metzger

30 days

 10^{9}

Auger

5. Hadronic interactions – Auger results

PMT analogy to shower

Shower-to-shower fluctuations

Proton-air cross section measurement

(Auger, Phys. Rev. Lett. 2012, ICRC 2017, see also discussion Lipari, Phys.Rev.D 103 (2021) 103009)

6. Atmospheric and geo-physics observations

AugerPrime – the upgrade of the Pierre Auger Observatory

Upgrade of Auger Observatory: scintillators

15% duty cycle

100% duty cycle

- Scintillators (3.8 m²) and radio antenna on top of each array detector
- Composition measurement up to 10²⁰ eV
- Composition selected anisotropy
- Particle physics with air showers

(AugerPrime design report 1604.03637)

Status of detector deployment

New quality of data – multi-hybrid measurements

Physics with the upgraded Observatory

Auger exposures for comparison

Spectrum (2004 – 2018, 6T5, θ < 60°): 60,400 km² sr yr Collect every year ~5300 km² sr yr (6T5, θ < 60°) Anisotropy (2004 – 2020, all angles): ~ 120,000 km² sr yr (4T5 pos/2) AugerPrime (7-8 years, $\theta < 60^{\circ}$): ~ 40,000 km² sr yr

- 1. Extend energy range of mass-sensitive measurements (lower and higher end)
- 2. New measurements / observables that fully exploit event-by-event charge/mass estimates
- 3. Multi-hybrid events to verify our understanding (reconstruction, hadronic interactions)
- 4. Reduction of systematic uncertainties at single event level (fluctuations)
- 5. Improve our triggers for **neutrinos**, exotic events, atmospheric phenomena
- 6. Learning for our Phase I data set: re-analysis of full data set with new knowledge (DNN, ...)

(Alves Batista et al, 1903.06714)

(Alves Batista et al, 1903.06714)

