

The UHE Universe in the Multimessenger Paradigm - Lessons from Neutrinos -

VILLUM FONDEN

Markus Ahlers Niels Bohr Institute GCOS Workshop, May 20, 2021

KØBENHAVNS UNIVERSITET

Neutrino Astronomy

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

coincident with photons and gravitational waves

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

BUT, very difficult to detect!

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- IceCube Array
 Collaboration of about 300 scientists at more than 50 international institutions
 - 60 digital optical modules (DOMs) attached to strings
 - 86 IceCube strings
 instrumenting 1 km³ of clear
 glacial ice
 - 81 IceTop stations for cosmic ray shower detections

High-Energy Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (*e.g.* NC interactions)

Diffuse TeV-PeV Neutrinos

Very-High Energy Cosmic Rays

Galactic Neutrino Emission

Contribution of Galactic diffuse emission at 10TeV-PeV is subdominant.

Search for Neutrino Sources

Point Source vs. Diffuse Flux

Populations of extragalactic neutrino sources can be visible

individual sources

or by the **combined isotropic emission.**

The relative contribution can be parametrized (*to first order*) by the average **local source density** and **source luminosity.** "Observable Universe" with far (faint) and near (bright) sources.

Hubble horizon

Point Source vs. Diffuse Flux

- Rare sources, like blazars or GRBs, can not be the dominant sources of TeV-PeV neutrino emission (magenta band).
- Consistent with results of IceCube analyses of GRBs and Fermi-LAT blazars. [IceCube, ApJ 835 (2017) 45; ApJ 843 (2017) 2]

Realtime Neutrino Alerts

Low-latency (<1min) public neutrino alert system established in April 2016.

- ✦ Gold alerts: ~10 per year >50% signalness
- ✦ Bronze alerts: ~20 per year 30-50% signalness

[IceCube, PoS (ICRC2019) 1021] Neutrino alerts (HESE & EHE (red) / GFU-Gold (gold) / GFU-Bronze (brown)) TXS 0506+056 Norfl best-fit direction IC170922A Fermi-LAT Counts/Pixel 6.6° IC170922A 50% IC170922A 90% 6.2° Declination .8°5 Declination Earth absorption \odot_{\odot} 5 180^C Galactic Plane 3 TXS 0506+056 2 5.0° € 4.678.4°78.0°77.6°77.2°76.8°76.4° **Right** Ascension Galactic -900

GCOS - Lessons from Neutrinos

TXS 0506+056

[IceCube++, Science 361 (2018) 6398]

- IC-170922A observed in coincident with **flaring blazar TXS 0506+056**.
- Chance correlation can be rejected at the 3σ -level.
- TXS 0506+056 is among the most luminous BL Lac objects in gamma-rays

RESEA

RES

NEUTR

Mu

flai

hig

Reference INTEGI

VERIT

RES

NEUTR

Nei

of t

the

IceCub

A high-e

directio

this ass excess

events,

and Ma emissio episode

neutrine

■ 1110 D6₁₅0 s 0556

ltiwa

Neutrino Flare in 2014/15

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Hadronic Gamma-Rays

EM cascades from interactions in cosmic radiation backgrounds:

$$\gamma + \gamma_{\rm bg} \rightarrow e^+ + e^-$$
 (PP)
 $e^{\pm} + \gamma_{\rm bg} \rightarrow e^{\pm} + \gamma$ (ICS)

Markus Ahlers (NBI)

GCOS - Lessons from Neutrinos

Hadronic Gamma-Rays

Neutrino production via cosmic ray interactions with gas (pp) or radiation (p γ) saturate the isotropic diffuse gamma-ray background.

[see also Murase, MA & Lacki'13; Tamborra, Ando & Murase'14; Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbrouke'15; Palladino, Fedynitch, Rasmussen & Taylor'19]

Hidden Sources?

Efficient production of 10 TeV neutrinos in pγ scenarios require sources with **strong X-ray backgrounds** (*e.g.* AGN core models).

High pγ pion production efficiency implies strong internal γ-ray absorption in Fermi-LAT energy range:

 $\tau_{\rm yy} \simeq 1000 f_{\rm py}$

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Waxman-Bahcall Limit

• UHE CR proton emission rate density:

[e.g. MA & Halzen'12]

$$[E_p^2 Q_p(E_p)]_{10^{19.5} \text{eV}} \simeq 8 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

• Neutrino flux can be estimated as (ξ_z : redshift evolution factor) :

$$E_{\nu}^{2}\phi_{\nu}(E_{\nu}) \simeq f_{\pi} \frac{\xi_{z}K_{\pi}}{1+K_{\pi}} \underbrace{\frac{1.5 \times 10^{-8} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}}_{\text{IceCube diffuse level}}$$

- Limited by pion production efficiency: $f_{\pi} \lesssim 1$ [Waxman & Bahcall'98]
- Similar UHE nucleon emission rate density (local minimum at $\Gamma\simeq 2.04)$:

$$[E_N^2 Q_N(E_N)]_{10^{19.5} \text{eV}} \simeq 2.2 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

[Auger'16; see also Jiang, Zhang & Murase'20]

• **Competition** between pion production efficiency (*dense target*) and CR acceleration efficiency (*thin target*).

Cosmic Ray Calorimeters

- Competing requirements for efficient CR acceleration and subsequent interaction can be accommodated in **multi-zone models**.
- Magnetic confinement in CR calorimeters, such as **starburst galaxies**, could provide a unified origin of UHE CRs and TeV–PeV neutrinos.

[Loeb & Waxman '06]

• "Grand Unification" of UHE CRs, γ -rays and neutrinos?

Markus Ahlers (NBI)

Starburst Galaxies

- High rate of star formation and SN explosions enhances (UHE) CR production.
- Low-energy cosmic rays remain magnetically confined and eventually collide in dense environment.
- In time, efficient conversion of CR energy density into γ-rays and neutrinos. [Loeb & Waxman '06]
- Power-law neutrino spectra with high-energy softening from CR leakage and/or acceleration.

[Romero & Torres'03; Liu, Wang, Inoue, Crocker & Aharonian'14; Tamborra, Ando & Murase'14][Palladino, Fedynitch, Rasmussen & Taylor'19; Peretti, Blasi, Aharonian, Morlino & Cristofari'19][Ambrosone, Chianese, Fiorillo, Marinelli, Miele & Pisanti'20]

UHE CR Anisotropy

- UHE CR arrival direction above 8EeV show strong (6.5%) **dipole anisotropy** $(5.2\sigma).$ [Auger'17]
- Arrival directions of UHE CRs above 40 EeV show correlation with local starburst galaxies (4σ) .
- Indications for medium-scale anisotropy above 16 EeV in Northern Hemisphere (3.7σ) [TA'18]

UHE CR-Neutrino Correlations?

- Unified source models are tested by joint neutrino & CR analyses by ANTARES, Auger, IceCube & TA. [PoS (ICRC2019) 842]
- So far, no significant correlations have been identified.
- *Principal challenge:* Only 5% of observed TeV-PeV neutrinos are expected to correlate with UHE CRs.

"Observable Universe" in neutrinos and UHE CRs

Hubble horizon

Cosmogenic Neutrinos

- Cosmogenic (GZK) neutrinos produced in UHE CR interactions peak in the EeV energy range.
- Target of proposed in-ice Askaryan (ARA & ARIANNA), air shower Cherenkov (GRAND) or fluorescence (POEMMA & Trinity) detectors.
- Optimistic predictions based on high proton fraction and high maximal energies.
- Absolute flux level serves as independent measure of UHE CR composition beyond 40EeV.

[Alves Batista et al.'19]

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices,
 - incorporating les decade of IceCuł efforts
- In parallel, **IceTo enhancements** (s radio antennas) f
- Aim: deploymen⁻

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

IceCube Work in Progress

- Precision measurement of atmospheric neutrino oscillations and tau neutrino appearance
- Improved energy and angular

DeepCore 3 yr (1 σ)

IceCube Upgrade 1 yr sensitivity (1 σ)

OPERA (1σ)

SuperK (1 σ)

Outlook: Baikal-GVD

Outlook: KM3NeT/ARCA

- ARCA : 2 building blocks of 115 detection units (DUs)
- status April 2021: 6 DUs
- September 2021: +12 DUs

- Improved angular resolution for water Cherenkov emission.
- 5σ discovery of **diffuse flux** with full ARCA within one year
- Complementary field of view ideal for the study of point sources.

Markus Ahlers (NBI)

Vision: IceCube-Gen2

- Multi-component facility (low- and high-energy & multi-messenger)
- In-ice optical Cherenkov array with 120 strings and 240m spacing
- Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10PeV neutrino detection

Vision: IceCube-Gen2

Improved sensitivity for neutrino sources to find the origin of the isotropic TeV-PeV flux Precision measurement of **PeV-EeV neutrino fluxes** with extended in-ice optical and surface radio array

Vision: IceCube-Gen2

[IceCube-Gen2 White Paper, arXiv:2008.04323]

Summary

- Neutrino astronomy has reached an important milestone by the discovery of an **isotropic flux of high-energy (TeV-PeV) neutrinos.**
- So far, no significant point sources, but many interesting candidates.
- Intensity of cosmic neutrinos is comparable to that of ultra-high energy cosmic-rays (*Auger/TA*) and γ -rays (*Fermi-LAT*).
- Many interesting options for joint multi-messenger studies.
- Essential for future discoveries are **multi-messenger partners** facilitating low-latency studies.
- In parallel, development of **neutrino telescopes for the next decade** with complementary FoV and/or increased sensitivity and energy coverage. (Baikal-GVD, KM3NeT, P-ONE, RNO-G, IceCube-Gen2, ARA, ARIANNA, GRAND,...)
- More on IceCube-Gen2 "here" at GCOS on Thursday:

Tianlu Yuan (optical extension) & Alan Coleman (radio extension)

Backup Slides

Markus Ahlers (NBI)

Status of Neutrino Astronomy

No significant steady or transient emission from known Galactic or extragalactic high-energy sources, but **several interesting candidates.**

tau neutrino candidate

• Tau neutrino charged current interactions can produce delayed hadronic cascades from tau decays.

ICECUBE

 Arrival time of Cherenkov photons is visible in individual DOMs.

[IceCube, arXiv:2011.03561]

Cosmic neutrinos visible via their oscillation-averaged flavour.

Fraction of $\nu_{\rm e}$

Markus Ahlers (NBI)

GCOS - Lessons from Neutrinos

Neutrino Selection I

Neutrino Selection I

Markus Ahlers (NBI)

Neutrino Selection I

Markus Ahlers (NBI)

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- Cosmic neutrino events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

Astrophysical Neutrino Fluxes

GCOS - Lessons from Neutrinos

Gamma-Ray Bursts

High-energy neutrino emission is predicted by cosmic ray interactions with radiation at various stages of the GRB evolution.

Markus Ahlers (NBI)

GCOS - Lessons from Neutrinos

GRBs and Gravitational Waves

Markus Ahlers (NBI)

GRB 170817A

- No coincident neutrinos observed by IceCube, ANTARES or Auger.
- Consistent with predicted neutrino flux from internal shocks and **off-axis viewing angle.**

[ANTARES, IceCube, Auger & LVC, ApJ 850 (2017) 2]

GRB 170817A - Revisited

Blazars as Neutrino Factories

Active galaxy powered by accretion onto a supermassive black hole with relativistic jets pointing into our line of sight.

Markus Ahlers (NBI)

Non-Blazar Limit

- Photon fluctuation analyses of Fermi-LAT data allow to constrain the source count distribution of blazars below the source detection threshold.
- Inferred blazar contribution to EGB above 50 GeV:
 - Fermi Collaboration'15: $86^{+16}_{-14}\%$
 - Lisanti et al.'16:

$$68^{+9}_{-8}(\pm 10)_{\rm sys}\%$$

• Zechlin *et al.*'16

 $81^{+52}_{-19}\%$

Hadronic Gamma-Rays

Neutrino production via cosmic ray interactions with gas (pp) in general overproduce γ -rays in the Fermi-LAT range.

[Bechtol, MA, Ajello, Di Mauro & Vandenbrouke'15]

[see also Murase, MA & Lacki'13; Tamborra, Ando & Murase'14; Ando, Tamborra & Zandanel'15] [Guetta, MA & Murase'16; Palladino, Fedynitch, Rasmussen & Taylor'19] [Ambrosone, Chianese, Fiorillo, Marinelli, Miele & Pisanti'20]

Markus Ahlers (NBI)

GCOS - Lessons from Neutrinos

Tidal Disruption Events

Stars are pulled apart by tidal forces in the vicinity of supermassive black holes. Accretion of stellar remnants powers plasma outflows.

stellar debris

black hole

(relativistic) plasma outflow

[Credit: DESY, Science Communication Lab]

Markus Ahlers (NBI)

GCOS - Lessons from Neutrinos

Tidal Disruption Events

[Stein, R., Velzen, S.v., Kowalski, M. et al., Nature Astronomy (2021)]

- Association of alert IC-191001A with radio-emitting TDE AT2019dsg
- Plot shows data from Zwicky-Transient Facility and SWIFT-UVOT.
- Chance for random correlation of TDEs and IceCube alerts is 0.5%.

Probe of Fundamental Physics

[Ackermann, MA, Anchordoqui, Bustamante et al., Astro2020 arXiv:1903.04334]

Markus Ahlers (NBI)