UHECR Sources and Acceleration

Penn State University

NS

GCOS 2021

UHECR Source Candidates? (Classical)

Hillas condition E < Z e B r β

Magnetar

γ-ray burst (GRB)

Active galaxy (AGN)

Galaxy cluster

The strongest mag. fields B ~ 10¹⁵ G

The brightest explosions L_γ~10⁵² erg/s

The most massive black holes M_{BH}~10⁸⁻⁹M_{sun}

The largest gravitational object R_{vir} ~ a few Mpc

cf. B_{sun} ~1 G, L_{sun} ~4x10³³ erg/s, M_{sun} ~2x10³³ g, R_{sun} ~7x10¹⁰ cm

UHECR Source Candidates = Cosmic Monsters

The <mark>strongest</mark> mag. fields B ~ 10¹⁵ G

The <mark>brightest</mark> explosions L_γ~10⁵² erg/s

The most massive black holes M_{BH}~10⁸⁻⁹M_{sun}

The largest gravitational object R_{vir}~ a few Mpc

Hillas condition E < Z e B r β

cf. B_{sun} ~1 G, L_{sun} ~4x10³³ erg/s, M_{sun} ~2x10³³ g, R_{sun} ~7x10¹⁰ cm

Energetics

UHECR energetics: (0.2-2)x10⁴⁴ erg/Mpc³/yr @ 10^{19.5} eV

Nuclear-Rich Composition at the Sources?

Requirements for Sources of Nuclei

- Hillas condition (luminosity requirement) & energetics
- Anisotropy (including limits on the source density)
- 1. Nucleus-survival luminosity requirement \rightarrow powerful sources powerful in radiation \rightarrow efficient disintegration
- 2. "Heavy-rich" compositiona. intrinsic abundance/injection mechanismb. reacceleration
- 3. "Hard" spectrum of nuclei
 a. hard "escape" spectrum (≠acceleration spectrum)
 b. hardening due to "energy losses" in environments

New Hint: Intermediate Anisotropy

Auger hot spot: ~3.9 σ around Cen A (w. 28 deg) TA hot spot: ~2.9 σ (w. 25 deg) Auger cross correlation: starburst galaxies (stellar deaths) ~4.5 σ γ -ray emitting AGN ~3.1 σ

Particle Acceleration in AGN?

Hillas condition: $E_{max} \sim ZeBr\Gamma \sim 3x10^{19} \text{ eV Z} (\Gamma/10) (B/0.1 \text{ G}) (r/10^{17} \text{ cm})$

One-Shot/Shear Acceleration at Kpc Scale Jets

-2] 70 cm

 $\sigma(X_{\max})$

60 60,50

> 40 30

20 10└─ 18.0

18.5

19.0

 $\log_{10}(E/eV)$

19.5

20.0

20.5

20.5

- Super-solar abundance of nuclei in AGN?
- \rightarrow Reacceleration of "galactic" CRs by AGN jets Caprioli 15, Kimura, KM & Zhang 18

Shear acceleration (Γ ~1) (ex. Berezhko & Krymskii, Ostrowski) One-shot (espresso) acceleration (Γ >>1) (ex. Gallant & Achterberg)

Contd.

One-shot/shear acceleration has been demonstrated by numerical simulations

Shock Acceleration in Jet Backflows

- Jet-cocoon interactions lead to shocks in backflows forming a cocoon (demonstrated by hydrodynamic jet simulations)
- FR-II galaxies: promising for UHECR acceleration & delayed escape
- "Escape" spectrum is different from "acceleration" spectrum ex. cocoon shock: $s_{esc} = s_{acc} + 1/2$ (Ohira, KM & Yamazaki 10)

Multi-Messenger Signatures?

- VHE CRs: confinement in clusters UHE CRs: escape into intergalactic space
- CR nuclei: photodisintegration -> harder spectra

(Unger, Farrar & Anchordoqui 15)

18.5

19.0

log*E*[eV]

18.0

600↓ 17.5 Auger ICRC2015

19.5

20.0

Particle Acceleration in AGN?

Hillas condition: $E_{max} \sim ZeBr\Gamma \sim 3x10^{19} \text{ eV Z} (\Gamma/10) (B/0.1 \text{ G}) (r/10^{17} \text{ cm})$

Particle Acceleration in Inner Jets?

Origin of relativistic particles in blazars is under debate

- Jet: launched as Poynting-dominated (e.g., Blandford-Znajek mechanism)
- Maybe copious pairs (1<n_e/n_p<1000)
- Emission region: particle-dominated but magnetized
- Toroidal-dominated at larger distances
 -> quasi-perpendicular shocks
- Ultrarelativistic magnetized shocks: acceleration is inefficient unless parallel (Sironi et al. 13, Bell et al. 18 etc.)

\rightarrow magnetic reconnections?

but $\epsilon_{\rm p}/\epsilon_{\rm e}$ may not be large more studies are necessary

Ions? Maximum CR Energy

~10% of AGN have powerful jets: "radio-loud AGN" ~0.1-1% of them are FR II galaxies and FSRQs (on-axis)

Hillas condition: $E_A^{max}=ZeB'\Gamma R'$ $E^{max} < Z10^{19} eV$ for FSRQs nearby FR I & blazars seen by Fermi p_γ/A_γ losses are very important

ID	Source	d_L	$E_A^{\max{(t)}}/Z[10^{19}]$
		[Mpc]	[eV]
1	CenA(core)	3.7	0.004-3.3
2	M87	16.7	0.040
3	NGC1275	75.3	4.6
4	NGC6251	104	0.27
5	Mrk421	130.0	0.29
6	Mrk501 (h. ^(g) ,1997)	146.0	0.17-1.5
7	Mrk501 (1. ^(g) ,1997)	146.0	0.28-1.5
8	Mrk501 (1. ^(g) ,2007)	146.0	0.2
9	Mrk501 (1. ^(g) ,2009)	146.0	0.12-0.6
10	1ES1959+650(h. ^(g))	206	0.12-2.9
11	1ES1959+650(1. ^(g))	206	1.3
12	PKS2200+420/BL Lac	307.0	1.1
13	PKS2005-489	316.0	3.1
14	WComae	464.0	0.37-0.57
15	PKS2155-304	533.0	0.23

KM, Dermer, Takami, & Migliori 2012 ApJ

FSRQs cannot be 10²⁰ eV nuclei sources

Ions? Maximum CR Energy

~10% of AGN have powerful jets: "radio-loud AGN" Most of them are FR I galaxies and BL Lacs (on-axis)

Hillas condition: $E_A^{max}=ZeB'\Gamma R'$ $E^{max} \sim Zx(10^{18}-10^{19}) eV$ for BL Lacsnearby FR I & blazars seen by Fermi $p\gamma/A\gamma$ losses are irrelevant

ID	Source	d_L	$E_A^{\max(t)}/Z[10^{19}]$
		[Mpc]	[eV]
1	CenA(core)	3.7	0.004-3.3
2	M87	16.7	0.040
3	NGC1275	75.3	4.6
4	NGC6251	104	0.27
5	Mrk421	130.0	0.29
6	Mrk501 (h. ^(g) ,1997)	146.0	0.17-1.5
7	Mrk501 (1. ^(g) ,1997)	146.0	0.28-1.5
8	Mrk501 (1. ^(g) ,2007)	146.0	0.2
9	Mrk501 (1. ^(g) ,2009)	146.0	0.12-0.6
10	1ES1959+650(h. ^(g))	206	0.12-2.9
11	1ES1959+650(1. ^(g))	206	1.3
12	PKS2200+420/BL Lac	307.0	1.1
13	PKS2005-489	316.0	3.1
14	WComae	464.0	0.37-0.57
15	PKS2155-304	533.0	0.23

KM, Dermer, Takami, & Migliori 2012 ApJ

Blazars as UHECR Sources?

- FSRQs: efficient v production, UHECRs largely destroyed
- BL Lac objects: less efficient v production, UHE nuclei survive

- PeV-EeV v: py w. BLR & dust-torus photons \rightarrow unique prediction
- UHECR-blazar model \rightarrow EeV v detectable by next-generation v detectors (being tested by IceCube & Auger)
- UHECRs should be isotropized in lobes/clusters/filaments (KM, Dermer+ 12)

New Hint: Intermediate Anisotropy

Auger hot spot: ~3.9 σ around Cen A (w. 28 deg) TA hot spot: ~2.9 σ (w. 25 deg) Auger cross correlation: starburst galaxies (massive stellar deaths) ~4.5 σ γ -ray emitting AGN ~3.1 σ

(Re)acceleration by AGN winds/Superbubbles

AGN winds $\varepsilon_p^{\text{max}} \approx (3/20)(V_w/c)eB_wR \simeq 21 \text{ PeV } \epsilon_{B,-2}^{1/2}L_{w,44}^{1/2}(V_w/1000 \text{ km s}^{-1})^{1/2}$

superbubble (e.g., Bykov)

$$\varepsilon_{\max}(t) \simeq \frac{3}{20} \cdot Z \cdot e \cdot B \cdot R_{\rm s} \cdot \frac{V_{\rm s}}{c}$$
$$\simeq 1.6 \times 10^{17} Z \epsilon_{\rm B,-2} (\rm SFR_4 \cdot E_{ej,51})^{3/5} \rho_{0,-21}^{-1/10} t_{\rm Myr}^{-1/5} \, \rm eV$$

Transients?

absence of smallscale anisotropy (for protons)

n_s > 10⁻⁵-10⁻⁴ Mpc⁻³

Kashti & Waxman 08 JCAP Takami & Sato 09 Aph Auger 13 JCAP Takami, KM & Dermer 16 ApJ

Source density is high if the effective EGMF strength is not strong Transients: source density can be high & energy dependent

GRB-SN Connection & Tranrelativistic SNe

GRB-SN Connection & Tranrelativistic SNe

Fast Blue Optical Transients

Drout+ 14 (see also Arcavi+ 13 etc)

- Rapidly evolving (<10 day)
- Luminous & bright
- T ~ a fewx10⁴ K (blue)
- Unlikely to be Ni-powered
- Star-forming region
- ~4-7% of core-collapse SNe
- Transrelativistic shocks

(Low-Luminosity) GRBs/Engine-Driven Supernovae

#classical GRBs Waxman 95, Vierti 95 KM+ 08, Globus+ 15

10²⁶

40

30

20 10∟ 18.0

18.5

- 1. Dominantly "intermediate" mass nuclei: "prediction" of progenitor models (not free!)
- 2. Transrelativistic shocks (promising for DSA)
- 3. Instantaneous escaping spectrum: can be hard
- 3. Nuclei can survive
- 4. Correlation w. starburst galaxies

Zhang, KM+ 18, Zhang & KM 19 (see also KM+ 06, Wang+ 07)

 $\log_{10}(E/eV)$

19.0

19.5

20.0

20.5

Neutrinos from Engine-Driven SNe

- EeV: cosmogenic neutrinos overwhelm source neutrinos
- But PeV vs may come from inner jets (KM+ 06, Senno, KM & Meszaros 16)

Luminous Supernovae as Long-Duration Transients

Luminous SNe explanations w. radioactivity for I and II often have difficulty

- SLSN-I (hydrogen poor) energy injection by engine?
- SLSN-II (hydrogen) circumstellar material interaction

Fast-Rotating Pulsars/Magnetars

ock

Fang, Kotera & Olinto 12 ApJ Fang, Kotera, KM & Olinto 14 PRD see also Blasi, Epstein & Olinto 00 ApJ Arons 03 ApJ KM, Meszaros & Zhang 09 PRD

- Nuclei can be supplied from ٠ the neutron star surface
- Ion acceleration mechanism?

Summary

New clues from UHECR **composition** & anisotropy data

<u>AGN</u>

- UHECR reacceleration by large-scale jets is promising one-shot/shear and/or multiple-shock acceleration
 -> predicted heavy-rich abundance with hard escape spectra, turbulence?
- UHECR acceleration in inner jets (blazars) acceleration & escape?
 -> EeV neutrinos provide a unique test

Stellar deaths

- Diversity of transients (nuclei \rightarrow GRBs are not only candidates!)
 - Engine-driven SNe
 - transrelativistic shocks (promising sites for Fermi mechanism) predicted composition of intermediate nuclei from progenitors, escape?
 - Fast-rotating pulsars/magnetars natural loading of iron-like nuclei from NS, acceleration & escape?
 > PeV-EeV neutrinos provide a unique test
- Acceleration by AGN/starburst-driven winds

Multimessenger tests & modeling of acceleration, escape and abundance