Hadronic interactions at Highest Energies, and Synergies with LHC p-O

Tanguy Pierog

Karlsruhe Institute of Technology, Institute for Astroparticle Physics, Karlsruhe, Germany

GCOS Workshop, Zoom

May the **18th 2021**

Outline

Introduction

Particle physics Measurement
 Direct vs Indirect

importance of mass composition

- Air shower development
 - Link to LHC

basic observables in p-O

Link to nuclear physics

hadronization in extreme conditions

Cosmic Ray Energy Spectrum

GCOS – May 2021

T. Pierog, KIT - 3/15

Primary Cosmic Ray Composition from Air Showers

- Goal of Astroparticle Physics
 - Study of astrophysical object via received cosmic ray (CR) at Earth
- High energy cosmic rays detected via extended air showers (EAS)
 - Degeneracy between mass and hadronic interactions (change the same basic properties like crosssection...)
 - Hadronic interactions are the key for proper EAS simulations and CR analysis

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

Inconsistent mass composition point to weakness of hadronic interaction description in models : hybrid measurement is a must

Cosmic Ray Hadronic Interaction Models

- Theoretical basis :
 - \rightarrow pQCD (large p_t)
 - Gribov-Regge Theory (cross section with multiple scattering)
 - energy conservation
- Phenomenology (models) :
 - hadronization
 - string fragmentation
 - high density effects (ions)
 - diffraction (Good-Walker, ...)
 - higher order effects (multi-Pomeron interactions)
 - remnants
- Comparison with data to fix parameters
 - one set of parameter for all systems/energies
 - Iimited use of High Energy Physics models (Pythia, Herwig) not designed to be used with nuclei and limited predictive power for high energy extrapolation

Cosmic Ray Hadronic Interaction Models

limited use of High Energy Physics models (Pythia, Herwig) not designed to be used with nuclei and limited predictive power for high energy extrapolation

T. Pierog, KIT - 7/15

"Direct" measurements

- Inelastic cross-section :
 - Most direct particle physic measurement
 - Require proton component in primary cosmic ray flux !
 - Good mass identification to reduce uncertainties (He contamination) ...
- **Pion spectra :**
 - Based on muon fluctuations (Cazon et al.)
 - Tail sensitive to first interaction
 - Require very high statistic on muon content
- Unexpected behavior
 - New physics ?

"Indirect" measurements

- Degeneracy between mass composition and hadronic interactions
 - With unknown mass composition, hybrid type of measurements are a must to test hadronic interactions in EAS
 - Independent measurements of EM and muon component
 - Various types of measurements (number of muons, MPD, X_{max}, rise time, ...) and their correlations
- Different observable = different type of hadronic interactions
 - \rightarrow X_{max} = first interaction
 - MPD = pion interactions (diffraction, elasticity)
 - Muons = hadronization at all energies

GCOS – May 2021

T. Pierog, KIT - 8/15

+/- 20g/cm² is a realistic uncertainty from models after LHC:

- Larger than modern experimental uncertainties (~15g/cm²)
- Anything below lower model or above higher model won't be compatible with LHC data
- Significant improvement of the slope : uncertainty on the mean but not on the evolution

Light Ion Data Needed

Significant improvement require new data (light ion and higher energy)

GCOS – May 2021

Hadronizatio

 $\ln N_{\mu}^{\rm det}$ –

WHISP Meta-Analysis

- Global analysis of muon measurements in EAS :
 - Clear muon excess in data compared to simulation
 - Different energy evolution between data and simulations

Different energy or mass scale cannot change the slope
 Different property of hadronic interactions at least above 10¹⁶ eV

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy
 β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - β changes the muon energy evolution but not X_{max}

•
$$\beta = \frac{\ln(N_{mult} - N_{\pi^0})}{\ln(N_{mult})} = 1 + \frac{\ln(1 - \alpha)}{\ln(N_{mult})}$$

• +4% for β -> -30% for $\alpha = \frac{N_{\pi^0}}{N_{mult}}$
Depend on hadronization

$$N_{\mu} = A \left(\frac{E}{AE_0}\right)^{\beta} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

Air Shower with Modified Hadronization

- Collective effects observed at LHC in light system as a possible hint for different hadronization
 - **for different hadronization** Reduced charged ratio $\alpha = \frac{N_{\pi^0}}{N_{mult}}$ in QGP leads to more muons
 - Test of simplified core(QGP)-corona(string) using modified CONEX

Increase of collective hadronization as a possible solution Qualitatively in agreement with data, but real MC needed for confirmation !

EAS

Core-Corona effect in Air Showers

Artificially change hadronization from corona (string) to core (statistical model) at ALL rapidities (including forward) and increasing core fraction with energy

Summary

- To test hadronic interactions at the highest energy with GCOS, necessary to have both EM and muons component (and timing)
 - More type of measurements = more hadronic components tested
- **X**_{max} uncertainties mostly due to nuclear collision extrapolations
 - Precise measurements (inelastic cross-section, multiplicity, diffraction) needed in pA and AA with A<20</p>

Light ions at (LHC) and at higher energies (FCC)

Benchmark measurement to constrain muon based measurements

- "Muon puzzle" linked to QGP ? ... more measurements needed in "light" system and forward rapidities relevant for air showers
 - Future generation of model (EPOS 4) will include both hadronization to reproduce LHC data
 - Remaining discrepancy possibly explain by extreme boost in CR (Anchordoqui et al.)

Consistent description of data = more precise mass composition

Backup

GCOS – May 2021

T. Pierog, KIT - 16/15

Model Prediction Uncertainties

X max

+/- 20 to 40 g/cm² uncertainty from models before LHC

- Larger than modern experimental uncertainties (~15g/cm²)
- \rightarrow Different slope for $< X_{max} >$ for different models : different data interpretation

WHISP Working Group

Much more measurement available

- Auger, EAS-MSU, KASCADE-Grande, IceCube/IceTop, HiRes-MIA, NEMOD/DECOR, SUGAR, TA, Yukutsk
- Working group (WHISP) created to compile all results together. Analysis led and presented on behalf of all collaborations by H. Dembinski at UHECR 2018 :

H. Dembinski (LHCb, Germany),

- L. Cazon (Auger, Portugal), R. Conceicao (AUGER, Portugal),
- F. Riehn (Auger, Portugal), T. Pierog (Auger, Germany),

Y. Zhezher (TA, Russia), G. Thomson (TA, USA), S. Troitsky (TA, Russia), R. Takeishi (TA, USA),

T. Sako (LHCf & TA, Japan), **Y. Itow** (LHCf, Japan),

J. Gonzales (IceTop, USA), D. Soldin (IceCube, USA),

J.C. Arteaga (KASCADE-Grande, Mexico),

I. Yashin (NEMOD/DECOR, Russia). E. Zadeba (NEMOD/DECOR, Russia)

N. Kalmykov (EAS-MSU, Russia) and I.S. Karpikov (EAS-**MSU**, Russia)

Possible Nuclear Physics Explanation

To change this slope the charge ratio $\alpha = \frac{N_{\pi^0}}{N_{mult}}$ for secondary particle production should be changed

- Reduction of about -30% !
- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al.) ?

Effect observed at LHC (~10¹⁷ eV) ?

- Unexpected collective effects (QGP ???) in light systems observed at the LHC (at least modified hadronization)
 - **Reduced** α is a sign of QGP formation (Baur et al.) !
 - Not properly done in current MC (QGP only in extreme conditions)

- Problem : α changed at most by 20-25%

Modified EPOS with Extended Core

- Core in EPOS LHC appear too late
 - Recent publication show the evolution of chemical composition as a function of multiplicity
 - Large amount of (multi)strange baryons produced at lower multiplicity than predicted by EPOS LHC
- Create a new version EPOS QGP with more collective hadronization
 - Core created at lower energy density
 - More remnant hadronized with collective hadronization
 - Collective hadronization using grand canonical ensemble instead of microcanonical (closer to statistical decay)

Results for Air Showers

Large change of the number of muons at ground

Common Representation

Experiments cover different phase space

Distance to core, zenith angle, energy …

Define a unified scale (z) to minimize differences :

$$z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,\text{Fe}}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}$$

GCOS – May 2021

EAS

Raw Data

Renormalization

Define a unified scale (z) to minimize differences :

$$z = \frac{\ln N_{\mu}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}{\ln N_{\mu,\text{Fe}}^{\text{det}} - \ln N_{\mu,p}^{\text{det}}}$$

From a simple (Heitler) model, the energy and mass dependence of the muon number is given by :

$$N_{\mu} = A \left(\frac{E}{AE_0}\right)^{\beta} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

- Where β ~0.9 is link to hadronic interaction properties
- To extract proper relative behavior between data and model :
 - unique energy scale
 - estimation of mass evolution

Using an external data based model !

Unique energy scale obtained mixing

Relative factors between other experiment

Combine Auger/TA spectrum

Experiment

EAS-MSU

KASCADE-Grande

NEVOD-DECOR

IceCube Neutrino Observatory

 $E_{\rm data}/E_{\rm ref}$

unknown

unknown

1.19

1.08

Energy Scale

Rescaled Data

Rescaled Data with Mass Correction

Data Rescaled

GSF Composition Details

Real Observable Dependence

Variation of basic parameters

- Original parameters for E<10¹⁵ eV
- Logarithmic change up to E=10¹⁹ eV
- Correlation between parameters not taken into account
- Baryon not taken into account in charge ratio (effect can be much larger)

Large sensitivity on pion charge ratio and multiplicity

SIBYLL 2.1