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Why looking any further?

S.Joudaki et al., Astron.Astrophys. 638 (2020) 

We face a mix of long standing 
fundamental questions (DM, DE, physics of 
inflation)  and new tantalizing “curiosities” 
that make us question all aspects of our 
standard model as well as exploring new 

probes. 
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Because we can !

Upcoming surveys will provide us with a swath of data that will allow us to test 
gravity on cosmological scales with unprecedented precision.
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ȧ

a

◆2

=
1

3M2
P

✓
⇢0m
a3

+
⇢r
a4

+ ⇢0⇤

◆

2



The Standard Model of Cosmology

give the Friedmann eq.:
ds

2 = �dt

2 + a(t)dx̄2Einstein eqs. applied to the background FLRW metric of our Universe

If we now include perturbations

ds

2 = � [1 + 2 (t, ~x)] dt2 + a

2(t) [1 + 2�(t, ~x)] d~x2 + hij(t, ~x)dx
i
dx

j

the Einstein equations at linear level are decoupled:

�̈ + 2H �̇ � a2

2M2
P
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Beyond LCDM ?
Let me focus on dark energy and modifications of gravity
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Beyond LCDM - LSS frontier

The equations for (linear scalar) perturbations become significantly more 
complicated. Yet we can capture the effects in few phenomenological functions:
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Ongoing and upcoming wide field imaging and spectroscopic 
redshift surveys are in line to map more than a 100 cubic-billion-
light-year of the Universe: exquisite measurements of expansion 

rate & reconstruction of cosmic structure growth rate and 
lensing to ~ O(1)% over wide redshift range.

ESA M-class mission, O(€1 Billion), to be launched in 2022/2023

among several:

Beyond LCDM - LSS frontier
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GW170817
& GRB170817A

, they placed very stringent limits on the speed of gravity:(1.74± 0.05)s

Using the observed time-delay btw GRB and GW, 

and just like that, many modified gravity models were ruled out* !
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Effective Field Theory of Dark Energy

Will we be able to extract the correct physics out of these 
wonderful measurements?

And how about the tensors?
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Running of Planck’s constant, generated by non-minimal coupling

Deviation of speed of  GWs from unity; non-zero whenever there is a 
non-linear derivative coupling of the scalar field to the metric. Same 

non-linearity is responsible for non-zero anisotropic stress. 

Signals a coupling between the metric and the scalar-field

Quantifies the independent dynamics of the scalar-field

A unified action for linear perturbations
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Guided by symmetry principles

Unified and physically informed framework

Unified treatment of vast range of observables
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From the same unified action, we can now study also the propagation of tensors:

ḧij + (3 + ↵M )Hḣij + (1 + ↵T ) k
2hij = 0

Gravitational Waves Phenomenology
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ḧij + (3 + ↵M )Hḣij + (1 + ↵T ) k
2hij = 0

Gravitational Waves Phenomenology

↵T = 0

Creminelli & Vernizzi, PRL 2017
Ezquiaga, Zumalacarregui, PRL 2017
Baker et al., PRL 2017

GW170817 +GRB170817A
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c2T
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This cuts a big chunk of interesting, self-accelerating models



• A modified propagation of GW and a gravitational slip            are intertwined

No gravitational slip on large scales for 
scalar-tensor theories! 

Modified Gravity after GW170817
& GRB170817A

�(k ⌧ Ma) =  (k ⌧ Ma)

Pogosian & Silvestri PRD 2016

µ 6= ⌃

More specifically, a standard speed of propagation implies:



• A modified propagation of GW and a gravitational slip            are intertwined

No gravitational slip on large scales for 
scalar-tensor theories! 

Modified Gravity after GW170817
& GRB170817A

�(k ⌧ Ma) =  (k ⌧ Ma)

Euclid will measure this slip with ~1-10% accuracy.

 Were we to find a non-null value, then we would detect 
some “beyond scalar-tensor”.

Pogosian & Silvestri PRD 2016

µ 6= ⌃

More specifically, a standard speed of propagation implies:



Expanding the given action up to second order in the perturbations, and removing 
spurious DOFs, we can inspect the dynamics of perturbations: 
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Frusciante, Papadomanolakis, AS,  JCAP 1607 (2016). 

Theoretical Priors



Theoretical Priors for LSS

Espejo et al., PRD 2019



Reconstruction with theoretical priors

#weak lensing
DES
#Planck 2015 TT, lowTEB, lowl
#BAO Likelihoods
BAO: 6DF, MGS, eBOSS DR12 (in 9 bins by YTW), eBOSS DR14 (at 4 
z_eff by GBZ), 
eBOSS DR12 Lyman alpha
#Others:
Pantheon
WiggleZ_MPK

Pogosian, Peirone, Zhao, Li, Raveri, Koyama, AS, 
arXiv:2107.12990 
arXiv:2107.12992
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GW & beyond LCDM
So, we are left with:
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ḧij + (3 + ↵M )Hḣij + (1 + ↵T ) k
2hij = 0
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GW & beyond LCDM

⌅(z) ⌘ dGW
L (z)

dEM
L (z)

LISA Cosmology Working Group, JCAP 07 (2019)



Detecting DE fluctuations ?

We pick up additional, theory-dependent corrections from inhomogeneities along the line of sight:
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futuristic, but exciting!

N e↵
i =

Ni

�2
dL
/d2L



Towards precise and accurate Cosmology

Synergy will be the key!

CMB S4

Cosmology is a versatile tool that can test broad classes of theoretical scenarios.
The next decade of observations will see a tremendous leap in sensitivity.



Towards precise and accurate Cosmology
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THANK YOU
for hosting me !


