

PRESENTATION CONTENTS

) Point Ahead Angle Mechanism
) Main Function is to correct angle between Rx and Tx beams
) Place in the system: on the OB in the IFM path
) Simple mechanism, but extreme requirements
) Design \& performances
) PAAM 1.0
) Update to PAAM 2.0 (supported by NSO)
) Experimental campaign
) Conclusions
) Development is well underway

Optical Bench overview (old from 2013, by UGL)

PAAM 1 DEVELOPMENT

, Design and operation
) Rotation guided by elastic hinge: Non-magnetic, no contamination, stable, no friction
) Bonded isostatic mirror mount
) Monolithic structure (TiAIV): High yield stress \& High dimensional stability
) Feedback-controlled on internal extremely accurate capacitive sensor
) Performance and environmental tests:
) Both angular and OPD jitter compliant with extreme requirements (tested at AEI-Hannover)
) Thermal cycling between $+80{ }^{\circ} \mathrm{C}$ and $-10{ }^{\circ} \mathrm{C}$ (Tested at Airbus Defence and Space Netherlands)
) 20 g RMS random vibration testing

PAAM 2.0 DESIGN UPDATES

) Increased stiffness of structure
) Further optimized mechanism
Increased symmetry structure
) Added sensor redundancy
) Increased sensor accuracy
) Reduced volume for integration
) Improved load handling
) Collaborate with SRON for electronics development

EXPERIMENTAL CAMPAIGN

) Integration and Sample tests
) Adhesive interface strength and loads
) Sensor, actuator and control
) Running test on EBB
, IFM angle alignment and operation
) Thermal cycling in vacuum chamber
) Next step
) Operational load testing

PAAM CONCLUSIONS

) Already in 2008 a mechanism was designed, realised and tested that
, Provides the angular adjustment over the $\pm 412 \mu$ rad angular range
) While having less than $1 \mathrm{pm} / \sqrt{ } \mathrm{Hz} \cdot \mathrm{n}(\mathrm{f})$ OPD jitter and
) Less than $10 \mathrm{nrad} / \mathrm{VHz} \cdot \mathrm{n}(\mathrm{f})$ angular jitter
) Capable of withstanding environmental loads of 20 g RMS and thermal cycling $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
) In 2019/2020 the design was updated to accommodate updated needs/requirements
) Provide redundancy and higher resolution on the angular measurement
) Increased stiffness of the structure
) Require less volume for integration/removal
) Currently the PAAM 2.0 Elegant Breadboard testing is ongoing: $1^{\text {st }}$ results EBB are promising
) Development well underway for integration on the Optical Bench!

