LISA MCU OMS Mechanism Control Unit Optical Metrology System

Martin Frericks, System Engineer

Netherlands Institute for Space Research

Netherlands Organisation for Scientific Research (NWO)

LISA MCUs (Mechanism Control Unit)

• MCU GRS (Gravitational Reference Sensor)

- MCU OMS (Optical Metrology System)
 - Three mechanisms
 - PAAM Point Ahead Angle Mechanism
 - FSU Fibre Switching Unit
 - BAM Beam Angle Mechanism
 - Need an electronic Control Unit
 - MCU OMS
 - End responsibility SRON

MCU, Mechanism Control Unit, 3 FEE boards

- FEE = Front End Electronics (Analog)
- LISA contains 3 mechanisms
 - FSU, Fiber Switching Unit, Czechia,
 <---->FEE Czechia
 - BAM, Beam Angle Mechanism, Belgium, < - > FEE Belgium
 - PAAM, Point Ahead Angle Mechanism, TNO, < - - > FEE SRON

MCU, Mechanism Control Unit, dig control, TM/TC and HK

- MCU measures and changes position, via digital control
- MCU is commanded from the Spacecraft (TC = TeleCommand)
- MCU sends information to te Spacecraft (TM = TeleMetry)
 - Mechanisms status (e.g. position)
 - Housekeeping (HK) of mechanisms and electronics

MCU, Mechanism Control Unit, DC/DC converters

- MCU is powered from the Spacecraft with 50V
 - This volage needs to be converted by DC/DC converters to
 - 100 V for Piezo drivers of the mechanisms
 - + and ~ 10V for FEE
 - 1.5 and 3.3 V for dig
- Belgium is investigating funding for this part.
- Germany is back-up

MCU, Mechanism Control Unit, Housing

- MCU electronic boards need to be contained in a housing
 - To shield from Elektro Magnetic Interference
 - To withstand vibrations during launch
 - To withstand shocks when rocket stage is repelled

•

Mechanisms and MCU: total numbers needed

- One Optical Bench (OB) contains
 - 1 PAAM,
 - 2 FSUs
 - 2 BAMs
- Per OB 1 MCU is used, to control those 5 mechanisms
- One satellite contains 2 OBs so
 - 10 mechanisms
 - 2 MCUs
- LISA consists of 3 satellites so
 - 30 mechanisms
 - 6 MCUs
- Including Flight Spares 8 flight MCUs are needed

Redundancy of MCU

- If function or part in MCU fails
 - Satelite should still perform as before (no single point failures allowed)
- Therefor all functionality in the MCU is doubled
 - One part is on (warm)
 - One part is off (cold)
 - In case of failure, the system switches from one system to the other

LISA MCU comparable box

Team

- MCU NL:
 - Project Manager
 - System Engineer
 - Product/Quality Assurance
 - Analog designer
 - Layout

- Pieter Dieleman
- Dennis van Loon, Martin Frericks
- nce Phillip Laubert
 - Ad Nieuwenhuizen, Axel Detrain, Channah Vogel, Frans Zwart
 - Rob de la Rie

