Cyclops Design For GCOS

- one or few 360 degree ("Cyclops") FD sites
- single point of maintenance & operation
- high-quality maximum viewing distance (Auger South FD APP 34 (2011) 368):
 - $R_{\text{max}} \approx 30 \text{ km at } 10^{19} \text{ eV}$
 - $R_{\text{max}} \approx 45 \text{ km at } 10^{20} \text{ eV}$

cyclopes at Auger North, 1019 eV:

FD Field of View

Important range at UHE: $X_{\rm max} \in (700, 900)~{\rm g/cm^2}$ (slant depth!)

FD Field of View

Cut on viewable range $X_{\rm low} < 700,\, X_{\rm up} > 900~{\rm g/cm^2}$

Effective Area vs. Upper Field of View Boundary

small field of view needed at UHE (large $R_{\rm max}$), $\alpha_{\rm max} \lesssim 10^{\circ}$

GCOS Cyclops FD: Small Elevation Range, Large Area, Small Pixels

e.g. MACHETE Design J. Cortina et al. APP (2016) 46

Nepomuk Otte PoS ICRC19

Figure 7: Proposed optics for *Trinity* based on the MACHETE optics. The primary mirror is composed of 68, 1 m^2 mirrors. the focal plane (red curved surface) is populated with 3,300 pixels each consisting of a solid non-imaging light concentrator coupled to an SiPM. The field of view covered by one telescope is $5^{\circ} \times 60^{\circ}$.

- 2 MACHETE rings $\rightarrow 360^{\circ} \times 10^{\circ}$ FoV
- cost: \sim 10 M\$ Trinity whitepaper arXiv:1907.08727
- 0.3° pixel, effective aperture 10 m²
- $(S/N)_{\rm FD} \propto \sqrt{A/\Omega_{\rm pix}} \to (S/N)_{\rm Cyclops}/(S/N)_{\rm Auger} = \sqrt{10~{\rm m}^2/0.3^{\circ}^2}/\sqrt{3~{\rm m}^2/1.5^{\circ}^2} = {\bf 9}$
- \rightarrow optimization for GCOS needed & check dual use ν +UHECR