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Pierre Auger: Traditional reconstruction of
the shower (i.e. Geometry and then shower profile)

FAST: Both, Geometry and
shower profile (i.e Xmax and Energy)
need to be estimated from the
pulse information.
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Figure 6.5. (a) The path of the CLF at TA (red) across the FoV of the FAST camera and
(b) an example detection of the CLF (an average of 200 laser shots) with the

central FAST telescope [217].



Shower Reconstruction with a FAST Array

(Long story short)

A learning machine algorithm is used to find a
first guess of the shower parameters

A learning machine algorithm is used to obtain a first

guess of the shower reconstruction (i.e. geometry, Xmax
and Energy).

Training sample: 500,000 events simulated within a small
core region of 1 km of radius, 80% for training and 20% for
validation.

Input parameters: centroid time, total signal, pulse height

Resolution and Bias
Shower Res. ~2.76°, Bias < 0.75°
axis:
Core: Res. ~256m , Bias <50m
Xmax:  Res.~60 g/cm?, Bias < 30 g/cm?
Energy: Res. ~25% , Bias<15%

A given atmosphere model is used for training. So, no
atmosphere measurements are considered.

A Top Down reconstruction (inverse MC)
algorithm is used to fine tune the shower
reconstruction
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Parameter Simulated Value First Guess Reconstructed Value
Xmax [g/cm?] 750 750 751.849.6
Energy [EeV] 31.6 31.6 31.2+0.7
Zenith [deg] 30 30 31.2+0.3
Azimuth [deg] 50 50 49.8+0.8
CoreX [m] 500 500 516.0+45.6
CoreY [m] -500 -500 -515.9+34.4
Parameter Simulated Value First Guess Reconstructed Value
Xmax [g/cm?] 750 700 754.2+9.9
Energy [EeV] 31.6 30 31.3+0.7
Zenith [deg] 30 30.5 29.24+0.1
Azimuth [deg] 50 53 50.4+1.0
CoreX [m] 500 550 455.1+7.1
CoreY [m] -500 -350 -478.8+36.7




learning machine algorithm

performance
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Figure 8.2. The configuration of the simulated FAST stations used for the training and

testing of the neural network reconstruction. The dashed lines represent the
regions within which core positions of the simulated showers are sampled
uniformly, and the crosses represent their centres.
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Figure 8.2. The configuration of the simulated FAST stations used for the training and

testing of the neural network reconstruction. The dashed lines represent the
regions within which core positions of the simulated showers are sampled
uniformly, and the crosses represent their centres.
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Impact of systematic in the telescope pointing directions
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Figure 8.25. The X.x bias (left) and resolution (right) as a function of energy for the
central core position shown in Figure 8.2 with modified telescope pointing
directions. The data points in the left panel are shifted laterally to aid the
reader. The grid lines separate each energy bin.



Impact of systematic in the atmospheric parameters &
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Figure 8.31. The X« bias (left) and resolution (right) as a function of energy for the
central core position shown in Figure 8.2 with modified atmospheric models.



25

20

15

10

AE [%]

-10

Impact of systematic in the atmospheric parameters

Atmosphere
25 }Hﬂ { Standard (VAOD = 0.05)
{ January (VAOD = 0.05)
. T | { August (VAOD = 0.05)
v e 1 20 { Parametric (VAOD = 0.1)
{ Parametric (VAOD = 0.01)

o(E) [%]
o

¢ | . ....... L : ....... : ....... 5 _______ S #H{
e 10 I}H{
° [ ® s é - s 5 * { I%} ;;# {}s} i}.@
20 40 60 80 100 10 20 30 40 50 60 70 80 90 100
Energy [EeV] Energy [EeV]

Figure 8.33. The energy bias (left) and resolution (right) as a function of energy for the

central core position shown in Figure 8.2 with modified atmospheric models.
The data points in the right panel are shifted laterally to aid the reader. The
grid lines separate each energy bin.
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Top Down Reconstruction
Performance Test
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Figure 7.7. The configuration of the simulated FAST stations. The dashed line represents the

region within which core positions of simulated showers are sampled uniformly,
and the cross represents the centre of the cell.

Reconstructing Xmax only
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Figure 7.9. Distributions of (a) the difference between simulated and reconstructed Xmax
and (b) the X, pull distribution. Note the means are close to 0 and the pull
distribution is very close to a standard normal distribution (mean 0 and variance
1) indicating that the associated uncertainties in Xp,,x are consistent with the
random fluctuations in the reconstructed value of Xax.
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Figure 7.8. The negative log-likelihood (—21n £) plotted as a function of X,,c. Note that
the minimum corresponds to the reconstructed Xmax of ~852 g/cm?.



Reconstructing Energy only

Top Down Reconstruction
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Figure 7.7. The configuration of the simulated FAST stations. The dashed line represents the 0
region within which core positions of simulated showers are sampled uniformty, [ e
and the cross represents the centre of the cell. ==
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Figure 7.10. The negative log-likelihood (—21n £) plotted as a function of energy.
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7.4 Reconstruction Algorithm

The reconstruction software FAST-rec is implemented in C+ using the FAST modified
version of the Auger Offlin€ software framework described in Section 7.3. The author
has developed all reconstruction software, including a new event structure which
utilises the ROOT file format. A description of this FAST event structure is provided in
Appendix B to compliment the work presented in this chapter. An example sequence
file for the reconstruction of FAST events is shown in Code 7.2.

<!-- A sequence for FAST shower reconstruction -->
<sequenceFile>

<enableTiming/>

<moduleControl>

<loop numTimes="unbounded" pushEventToStack="yes">

<module> FASTEventFileReaderUA </module>
<module> FASTTopDownReconstructorUA </module>
<module> FASTEventFileExporterUA </module>
</loop>
</moduleControl>

</sequenceFile>

Code 7.2 An example sequence file for the reconstruction of FAST events.



