GCOS, SHIDM, and UM Ads Distance conjectu

Luis Anchordoqui

Birth and death of superheavy X-particles

> Intense fluctuating gravitational fields gave birth to superheavy X-particles just after the big bang

 \succ The expansion of space during inflation distributed the X-particles through the cosmos

> After billions of years the X-particles decay producing a range of detectable particles

particle physics factor

> To estimate the flux of detectable particles we need to evaluate:

astrophysical factor

What will GCOS data tell us about SHDM?

Null search results results results results on X-lifetime

Excluded region of the Hillas plot

The Dark Dímensíon

What will GCOS data tell us about UV physics?

Does the spectrum cutoff features a source cutoff but without universal UV cutoff? High variance in source spectra characterized by properties inherent to acceleration environment Do nuclear species in source spectra scale with Z beyond the ankle? $E_{
m CR}^{-\gamma} \exp[-E_{
m CR}/E_{p,
m max}]$ with $E_{
m CR,
m max} = ZE_{p,
m max}$ versus $E_{
m CR}^{-\gamma} \exp[-E_{
m CR}/E_{
m UV}]$ NEED HIGH-STATISTICS DATA SAMPLE WITH SENSITIVITY TO BARYONIC COMPOSITION How can we distinguish universal GZK cutoff from universal UV cutoff @ sources? Study individual spectra of nearby sources Proof of Concept 🖛 Starburst Galaxies Assume unbroken power-law spectrum $\propto E_{
m CR}^{-\gamma}$ Auger + TA data: 231 + 72 Likelihood fit results 🖛 68% CL

Starburst	Experiment Eve	ents γ	$\gamma_{ m min}$	$\gamma_{ m max}$
NGC 4945	Auger 1	4 6.8	5.4	8.5
M83	Auger 1	3 4.6	3.7	5.7
NGC 253	Auger 8	3 4.8	3.6	6.4
NGC 1068	Auger 8	3 4.9	3.7	6.4
NGC 1068	TA 2	2 3.9	2.3	6.5
M82	TA S	3 5.3	3.3	8.3

All spectra consistent with $\gamma = 5 \, \mathrm{@} \, 1 \sigma$

What will GCOS data tell us about UV physics?

Does the spectrum cutoff features a source cutoff but without universal UV cutoff? High variance in source spectra characterized by properties inherent to acceleration environment Do nuclear species in source spectra scale with Z beyond the ankle? $E_{
m CR}^{-\gamma} \exp[-E_{
m CR}/E_{p,
m max}]$ with $E_{
m CR,
m max} = ZE_{p,
m max}$ versus $E_{
m CR}^{-\gamma} \exp[-E_{
m CR}/E_{
m UV}]$ NEED HIGH-STATISTICS DATA SAMPLE WITH SENSITIVITY TO BARYONIC COMPOSITION A "MUST" REQUIREMENT FOR GCOS DESIGN CONSIDERATIONS How can we distinguish universal GZK cutoff from universal UV cutoff @ sources? Study individual spectra of nearby sources Proof of Concept 🖛 Starburst Galaxies Assume unbroken power-law spectrum $\propto E_{
m CR}^{-\gamma}$ Auger + TA data: 231 + 72 Likelihood fit results 🖛 68% CL Starburst **Experiment Events** γ $\gamma_{\rm min}$ $\gamma_{\rm max}$ NGC 4945 Auger 6.8 5.4 8.5 14 M83 Auger 4.6 3.7 5.7 13 Auger 8 4.8 NGC 253 3.6 6.4 NGC 1068 Auger 8 4.9 3.7 6.4 NGC 1068 3.9 6.5 TA 2 2.3 5.3 3.3 M82 TA 3 8.3

All spectra consistent with $\gamma=5\, \mathrm{@}\, 1\sigma$