Layered Surface Detector for μ^{\pm} - (γ, e^{\pm}) separation at GCOS

Ioana C. Mariș (Université Libre de Bruxelles)

(A. Letessier-Selvon, P. Billoir, M. Blanco, I. C. Maris, M. Settimo, NIM A767 (2014), arxiv:1405.5699)

Global Cosmic Rays Observatory

How to reach the physics case with a surface detector?

A. Energy resolution: 10% at 100 EeV

 \rightarrow Driven by spacing between detectors and number of particles measured in the detectors

B. Angular resolution: 0.5 degrees at 100 EeV

 \rightarrow Driven by spacing between detectors and the time resolution

C. Excellent mass composition determination

 \rightarrow Determined by the quality of the separation between the em and muonic components of air-showers and hadronic interactions modeling

D. Huge exposure

 \rightarrow Driven by the effective cost of a detector (including deployment) and constrained by resolutions

25

20

Can Water Cherenkov Detectors do it?

 10^{20}

 $\sigma_{\rm SD}(E)/E$ $\sigma_{\rm FD}(E)/E$

1.5 km spacing vs 2.25 km spacing

Number of stations at 2.25 km spacing

(c) lg(E/eV) = 20

Statistics dominated by the 3 fold and 4 fold events up to 30 EeV

S(r) (energy) resolution

The idea: optical separation of a Water Cherenkov Tank

A water volume responds different to photons, e^{\pm} and μ^{\pm} photons electrons

muons

The idea: optical separation of a Water Cherenkov Tank

A water volume responds different to photons, e^{\pm} and μ^{\pm} photons electrons

muons

Universality of a and b

independent of distance to axis

Good resolution for muonic and electromagnetic signals at station level

bias smaller than 5% and resolution of about 20-25% on station signal leads to a event muonic signal resolution of better than 18%

Not only total signal, but also time distributions

Example of X_{max} reconstruction from Universality

Example of merit factors at 10 EeV and 63 EeV

Example of merit factors at 10 EeV and 63 EeV(extra randomisation)

11

Example of merit factors at 10 EeV and 63 EeV

Example of merit factors at 10 EeV and 63 EeV(extra randomisation)

