Alan Watson: GCOS Discussion for Session on Surface Detectors

General Remarks

- At least one site, there should be a large area with closely spaced-detectors ('infilled')
- The dynamic range of the detectors is very important
- Area of Detectors: larger the better but perhaps limited by road width

Linsley (in 1977) achieved 0.5 to 5 x 10^5 m⁻² on the compressed VR array

- We really know **NOTHING** about what goes on close to the core (< 500 m) of a shower of 10 EeV. Surely this is a place to test forward-physics
- Also we must try to see shower-to-shower differences in LDF important measurement related to mass measurement
 - Choice of geometry of layout is important

CGOS 13 July 2022: Discussion on Surface Detector Arrays

Use of the Signal at an Optimal Distance from the Shower Core as Surrogate for Shower Size

O Deligny¹, I Lhenry-Yvon¹, Q Luce², M Roth², D Schmidt² and A A Watson³

 ¹ IJClab (Laboratoire de Physique des 2 Infinis Irène Joliot-Curie), CNRS/IN2P3, Université Paris-Saclay, Orsay, France
 ² Institut für Astroteilchenphysik (IAP), Karlsruhe Institute of Technology, Karlsruhe, Germany
 ³ School of Physics and Astronomy, University of Leeds, LS2 9JT, UK Hillas (1969) analysed 50 events, recorded using the Haverah Park array of the time –a star-shaped geometry – using power-law lateral-distribution functions, differing by0.6 (consistent with observations)

For the early Haverah Park geometry,
Hillas found that the fluctuation in the signal at 500 m was less than 12%
For E₁₀₀, with the same values of the power law,
differences were typically around 1.7

3

Detailed study for Auger Observatory (Newton, Knapp and Watson et al 2007)

LDF	r _{opt} /m, mean	r_{opt}/m , RMS	$\Delta S(1000) = \frac{S(1000)_{\text{LDF}}}{S(1000)_{\text{NKG}}}$
Power law	960	110	1.045 ± 0.001
'Haverah Park'	940	100	0.986 ± 0.001
'NKG' type	970	110	1.00

Difference between optimum values for various ldfs (940 – 970 m) typically shows a spread in S(r) smaller than that at 1000 m of ~2%. So using 100m rather than smaller value not very important

Very little dependence on zenith angle or energy

Dependence of r_{opt} on detector spacing?

- For triangular geometry: $\sim 2/3$ of spacing is appropriate choice for r_{opt}
- Used (and checked) for 750 m array of Auger Observatory
- Used (but not checked) by TA for square array
- No obvious relation for HP geometry used in Hillas's seminal work

Does the layout of the detectors have an influence on the r_{opt} to be used?

Auger: Triangular grid 1500 m Telescope Array: Square grid 1200 m

Simulations using TA array with Water-Cherenkov detectors – for two energies and range of angles

> Green – no saturated stations Blue – saturated stations Red – all

 σ/S is larger at 800 m than at r_{opt}

log E = 18.5: 7% vs ~20% 19.5: 2% vs ~7%

Comparison of results for Triangular and Square grids

Fluctuations of S(*r*_{opt})

Fluctuations in S(1000) are biased because of underlying differences in β, the LDF parameter. Biases stronger for scintillators

 $\theta = 0^{\circ}$

8

Take home messages:

- Layout of an array has an impact on r_{opt}
- Difference between triangular and square array is important
- r_{opt} dependence should be investigated for planned geometries
- Desirable that r_{opt} does not depend on energy
- But, WHY is there this dependence? We are thinking hard about this

I know of no other systematic study of Triangular vs Square

- Triangular used at MIT, VR, HP, AGASA, Yakutsk.....
- Square at CASA, KASCADE and SUGAR (Auger North!)