

Multimessenger Astroparticle Physics ISCRA Erice 2024

Foteini Oikonomou

July 21 st-28th

• NTNU

Norwegian University of Science and Technology

About me

foteini.oikonomou@ntnu.no

- NTNU Trondheim
- Main research interests:
 - Ultra-high energy cosmic rays (sources, phenomenology)
 - Astrophysical sources of high-and ultra-high energy neutrinos
 - Active-galactic nuclei as cosmic accelerators

Lecture plan

- Focus on: UHECRs, neutrinos and EM counterparts
- Monday: Generic source properties (Requirements for astrophysical accelerators of high-energy cosmic rays/high-energy neutrinos)
- Tuesday/Wednesday: Overview of candidate multimessenger sources
 - Tuesday: Active Galactic Nuclei
 - Wednesday: Starburst Galaxies/Gamma-ray bursts/Pulsars/Tidal
 Disruption Events

Resources

- T.K. Gaisser, R. Engel & E. Resconi: Cosmic Rays and Particle Physics, Cambridge University Press (2016)
- C. Dermer & G. Menon: High-energy radiation from black holes: (2009)
- (2012) https://arxiv.org/abs/1202.5949

Gamma-rays, Cosmic Rays, and Neutrinos, Princeton University Press

• G. Ghisellini: Radiative processes in High Energy Astrophysics, Springer

High-energy messengers of the non-thermal Universe

Highest-energy cosmic rays

Extragalactic origin above 10¹⁸ eV

- Galactic B-field in the disk $\sim 3 \ \mu G$
- Larmor radius of cosmic rays

$$R_{\text{Larmor}} = \frac{E}{e \cdot ZB} \sim \frac{1}{\text{kpc}} \left(\frac{1}{Z}\right) \left(\frac{E}{10^{18.5} \text{ eV}}\right)$$

[+ Observational evidence: No anisotropy from the Galaxy]

Ultra-high-energy cosmic rays

 $\chi_{\text{loss}}(E_p = 10^{20} \text{ eV}) \sim 100 \text{ Mpc}$ $\chi_{\text{loss}}(E_p = 10^{19} \text{ eV}) \sim 1 \text{ Gpc}$

Averaged branching ratio,

$$E_{\nu}^2 \frac{\mathrm{d}N}{\mathrm{d}E_{\nu}} = \frac{3}{4}$$

$$R_{\pi} = \frac{\Gamma(\to \pi^{+/-})}{\Gamma(\to \pi^0)} \sim 1$$

Multimessenger diffuse fluxes

Generic source properties

- Hillas criterion for acceleration and plausible sources
- UHECR emissivity and number density
- Waxman & Bahcall neutrino bound (possible connection to UHECRs)
- Neutrino source emissivity
- Neutrino source number density and implications

Cosmic-ray accelerators Minimum requirement: Confinement (Hillas 1984)

$$R_{\rm source} > r_{\rm Larmor} = \frac{E}{ZBec}$$

Maximum energy,

$$E_{\text{max}} = ZecBR_{\text{source}}$$
$$E_{\text{max}} \sim 1 \text{ EeV } Z\left(\frac{B}{1\,\mu\text{G}}\right) \left(\frac{R_{\text{source}}}{1 \text{ kpc}}\right)$$

 $EeV = 10^{18} eV, ZeV = 10^{21} eV$

 $PeV = 10^{15} eV$

$$\begin{array}{c} 10^{14} \\ 10^{11} \\ 10^{11} \\ 10^{8} \\ 10^{5} \\ 10^{5} \\ 10^{2} \\ 10^{-1} \\ 10^{-1} \\ 10^{-4} \\ 10^{-7} \\ 10^{-10} \\ 10^{-10} \\ 10^{4} \\ 10^{7} \\ 10^{10} \\ 10^{10} \\ 10^{10} \\ 10^{10} \\ 10^{13} \\ 10^{16} \\ 10^{16} \\ 10^{19} \\ 10^{22} \\ 10^{25} \\ \text{Comoving size} \cdot \Gamma [\text{cm}] \end{array}$$

1 au 1 pc 1 kpc 1 Mpc

$$10^{14} - 10^{11} - 10^{$$

Hillas criterion for 10²⁰ eV CRs

Lower limit on the number density of UHECR sources

The absence of doublets of UHECRs gives a lower limit to the source number density:

The expected number of events from each source (assuming equal fluxes) is: $n_* = N_{\rm CR} / N_{\rm sources}$

The Poisson probability to see 0 events from a source is

$$P(0) = e^{-n_*} \frac{n_*^0}{0!} = e^{-n_*}$$

The Poisson probability to see 1 event from a source is n.,

$$P(1) = e^{-n_*} \frac{n_*}{1!} = e^{-n_*} n_*$$

The probability to see no doublet is

 $P(\text{no doublet}) = (1 - P(\ge 2))^{N_{\text{sources}}}$ $= (P(0) + P(1))^{N_{\text{sources}}}$ $= (e^{-n_*}(1+n_*))^{N_{\text{sources}}}$

Lower limit on the number density of UHECR sources

The probability to see no doublet is

 $P(\text{no doublet}) = (1 - P(\ge 2))^{N_{\text{sources}}}$ $= (e^{-n_*}(1 + n_*))^{N_{\text{sources}}}$ $= e^{-N_{ev}} \left(1 + \frac{N_{\text{CR}}}{N_{\text{sources}}}\right)^{N_{\text{sources}}}$

P(no doublet) ~ 1% if > 200 sources $\bar{n}_s \sim \frac{N_s = 200}{4/3\pi R_{\rm GZK}^3} \sim 10^{-5} \ {\rm Mpc}^{-3}$

Often in the literature (in absence of multiplets):

$$P(\text{no doublet}) = e^{-N_{\text{CR}}} \left(1 + \frac{N_{\text{CR}}}{N_s}\right)^{N_{\text{sources}}} \approx 1 - \frac{1}{2} \frac{N_{\text{CR}}}{N_s}$$
$$N_S \approx \frac{1}{2} \frac{N_{\text{CR}}^2}{1 - P(\text{no doublet})} \qquad N_S \gtrsim \frac{1}{2} N_{\text{CR}}^2$$

Lower limit on the number density of UHECR sources

Application to Auger data with E > 70 EeV (43 events):

Expected number of pairs in 90% of realisations (10 degrees):

Neutrino energy flux and multimessenger connections

29

I. UHECR energy loss length

Mean free path = I/(number density of targets x)cross-section)

 $\lambda = 1/n\sigma$

Relative energy loss per unit time:

$$-\frac{1}{E} \frac{\mathrm{d}E}{\mathrm{d}t} \bigg| = \left\langle \kappa \sigma n_{\gamma} c \right\rangle, \kappa = \frac{\Delta E}{E} = \text{inelastic}$$

Energy loss length:

$$\chi_{\rm loss} = c \cdot \left| \frac{1}{E} \frac{{\rm d}E}{{\rm d}t} \right|^{-1}$$

Photo-pair production (Bethe-Heitler process):

$$p + \gamma_{\rm bg} \rightarrow p + e^+ + e^- \qquad [\kappa_{p\gamma}^{ee} = E_p \gtrsim 10^{19} \,\mathrm{eV} \left(\frac{\varepsilon_{\gamma}}{6 \times 10^{-4} \,\mathrm{eV}}\right)^{-1}$$

 $2m_e/m_p \approx 10^{-3}, \sigma_{p\gamma,\text{thresh}}^{ee} \approx 1.2 \cdot 10^{-27} \text{ cm}^2, n_{\text{CMB}} \approx 411 \text{ cm}^{-3}$] $\lambda_{p\gamma}^{ee} \sim 1/(n_{\text{CMB}} \cdot \sigma_{p\gamma}^{ee}) \sim 1 \text{ Mpc}$

 $\chi_{\rm BH,loss} \sim \lambda_{p\gamma}^{ee}/\kappa \sim 1 {\rm Gpc}$ 31

I.UHECR energy loss length Photo-pion production (GZK process when target is the CMB)

Photo-pion production:

 $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow n/p + \pi^+/\pi^0$

$$E_{\rm p} \gtrsim 10^{20} \,\mathrm{eV} \left(\frac{\varepsilon_{\gamma,\rm cmb}}{6 \cdot 10^{-4} \,\mathrm{eV}}\right)^{-1}, n_{\rm cmb} \sim 411 \,\mathrm{cm}^{-3}$$

$$\begin{bmatrix} \kappa \approx m_{\pi}/m_{p} \approx 0.2, \sigma_{p\gamma} \approx 10^{-28} \,\mathrm{cm}^{2} \end{bmatrix}$$
$$\lambda_{p\gamma,\mathrm{CMB}} = 1/n\sigma \sim 10 \,\mathrm{Mpc}, \,\chi_{\mathrm{loss}} = \lambda/\kappa \sim 50 \,\mathrm{Mpc}$$

2. UHECR energy density

2. UHECR energy density

Auger Coll, ICRC 2017 (see also Auger Coll 20.

J(E) is the measured number of particles per unit energy, per unit area, per unit time, per unit solid angle dN $dEdAdtd\Omega$ The number density of particles is $n(E) = \frac{\mathrm{d}N}{\mathrm{d}E\mathrm{d}^3x} = \frac{\mathrm{d}N}{\mathrm{d}E\,\mathrm{d}l\,\mathrm{d}A} = \frac{\mathrm{d}N}{\mathrm{d}E\,\,\mathrm{c}\mathrm{d}t\,\mathrm{d}A} = \frac{4\pi}{c}J(E)$ and the energy density is $U_E = \begin{bmatrix} E & n(E) & dE = \frac{4\pi}{2} \end{bmatrix} \begin{bmatrix} E & J(E) & dE \end{bmatrix}$ 20.0 C J

2. UHECR energy density Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL) At 5 EeV we measure,

$$E_0^3 \cdot J_0 = 10^{37.3} \text{ eV}^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$$

which corresponds to (for an E⁻² spectrum),

$$U_{\text{UHECR}} \approx \frac{4\pi}{c} E_0^2 J_0 \ln(E_{\text{max}}/E_{\text{min}}) \sim \frac{4\pi}{c} E_0^2 J_0 \ln(10)$$
$$\approx 10^{-8} \text{ eV cm}^{-3} \approx 6 \times 10^{53} \text{ erg Mpc}^{-3}$$

3. UHECR emissivity

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL)

 $-\chi_{\rm loss, UHECR}/c$

*t*_{loss,UHECR}

At 5 EeV we measure,

$$E_0^3 \cdot J_0 = 10^{37.3} \text{ eV}^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$$

which corresponds to (for an E⁻² spectrum),

$$U_{\text{UHECR}} \approx \frac{4\pi}{c} E_0^2 J_0 \ln(E_{\text{max}}/E_{\text{min}}) \sim \frac{4\pi}{c} E_0^2 J_0 \ln(10)$$
$$\approx 10^{-8} \text{ eV cm}^{-3} \approx 6 \times 10^{53} \text{ erg Mpc}^{-3}$$
$$|\text{ erg} \sim |$$

 $-=\frac{U_{\text{UHECR}}}{1 \,\text{Gpc/}c} \approx 2 \times 10^{44} \,\text{erg Mpc}^{-3} \,\text{year}^{-1}$

3. UHECR emissivity

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL)

Full derivation based on simulated *intrinsic* source spectra: $\dot{\varepsilon}_{\text{Auger combined fit}} \approx 5 \times 10^{44} \text{ erg Mpc}^{-3} \text{ year}^{-1}$

At 5 EeV we measure,

$$E_0^3 \cdot J_0 = 10^{37.3} \text{ eV}^2 \text{ km}^{-2} \text{ sr}^{-1} \text{ yr}^{-1}$$

which corresponds to (for an E⁻² spectrum),

$$U_{\text{UHECR}} \approx \frac{4\pi}{c} E_0^2 J_0 \ln(E_{\text{max}}/E_{\text{min}}) \sim \frac{4\pi}{c} E_0^2 J_0 \ln(10)$$
$$\approx 10^{-8} \text{ eV cm}^{-3} \approx 6 \times 10^{53} \text{ erg Mpc}^{-3}$$
$$|\text{ erg} \sim |10^{-3}$$

 $= \frac{U_{\text{UHECR}}}{1 \,\text{Gpc/}c} \approx 2 \times 10^{44} \text{ erg Mpc}^{-3} \text{ year}^{-1}$

3. UHECR emissivity: Comparison to source classes

Object	Power [erg/s]/ Energy [erg]	Number density / rate	Luminosity density	Duration	Emissivity
Milky Way like galaxies	10 ⁴² erg s ⁻¹		10 ⁴² erg s ⁻¹ gal-1	Gyr	1047 erg Mpc-2 yr-1
Core collapse supernovae	10 ⁵¹ erg	10 ⁻² gal ⁻¹ yr ⁻¹	1041 erg s-1gal-1	kyr	1047 erg Mpc-2 yr-1
Neutron stars (magnetars)	10 ⁴⁰ erg s ⁻¹	10-3 gal-1 yr-1	10 ⁴⁰ erg s ⁻¹ gal-1	kyr	1047 erg Mpc-2 yr-1
Gamma-ray burst (on-axis)	10 ⁵¹ erg	10 ⁻⁷ gal ⁻¹ yr ⁻¹	10 ³⁸ erg s ⁻¹ gal-1	I - 100s	10 ⁴² erg Mpc ⁻² yr-1
Jetted TDE (on-axis)	10 ⁴⁶⁻⁴⁸ erg s ⁻¹	10 ⁻⁹ gal ⁻¹ yr ⁻¹	10 ³⁷ erg s ⁻¹ gal-1	~yr	1041 erg Mpc ⁻² yr-1
TDE	10 ⁴⁴ erg s ⁻¹	10 ⁻⁵ gal ⁻¹ yr ⁻¹	10 ³⁹ erg s ⁻¹ gal-1	~yr	1043 erg Mpc-2 yr-1
Starburst galaxies	10 ⁴³ erg s ⁻¹	10-2	1041 erg s-1gal-1	~Myr	10 ⁴⁵ erg Mpc ⁻² yr-1
Non-jetted AGN	10 ⁴⁴⁻⁴⁵ erg s ⁻¹	10-2	10 ⁴² erg s ⁻¹ gal-1	~Myr	10 ⁴⁶ erg Mpc ⁻² yr- ¹
Blazars	10 ⁴⁷⁻⁴⁹ erg s ⁻¹	I O-5	10 ⁴² erg s ⁻¹ gal-1	~Myr	10 ⁴⁶ erg Mpc ⁻² yr-1

Waxman-Bahcall bound

- Neutrinos from photo-meson interactions of UHECR protons in sources (AGN/GRBs)
- Optically-thin sources (protons can escape) otherwise neutrino only sources not UHECR sources
- Fermi-type acceleration

 $E_{\rm CR}^2 dN_{\rm CR}/dE_{\rm CR} \sim E_{\rm CR}$ $\dot{\varepsilon}_{\rm UHECR} \approx 10^{44} \ {\rm erg}$

• Proton loses fraction, ϵ , of its energy

$$E_{\nu}^2 \Phi_{\nu}$$
(single flavour) $|_{E_{\nu}=0.05E_{cr}} = -$

we called it J before...

$$= 1.5 \times 10^{-8} \epsilon \xi_z \text{ GeV cm}^{-2} \text{ s}^{-2}$$

$$p + \gamma_{\text{CMB}} \rightarrow p + \pi^0 - \text{BR 50\%}$$

$$p + \gamma_{\text{CMB}} \rightarrow n + \pi^+ - \text{BR 50\%}$$

$$\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_\mu$$

$$C_{\rm CR}^{-2}$$
 (at the source)
or Mpc⁻³ year⁻¹

Waxman-Bahcall bound

The product of luminosity per source, L, source density, n, corresponds to the tota emission per volume and is constrained observed diffuse flux of neutrinos

luminosity density $\sim L \cdot n$

The number density gives the volume within which one source must lie is

$$V = \frac{4\pi r^3}{3} \sim \frac{1}{n}$$

an	d
al	
by	the

Source class	Number density [Mpc ⁻³]	
powerful blazars (FSRQ)	0-9	
weaker blazars (BL Lac)	0-7	
Starburst galaxies	0-5	
Galaxy clusters	0-5	
Jetted AGN	0-4	
Normal galaxies	0-2	

• The nearest neutrino source must therefore be at distance

$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3} - (1)$$
 e.g. $n = 10^{-4}$ N
 $r = 10$ Mpc

- . The flux expected from an individual source with neutrino luminosity L is
- Sources below the IceCube point-source flux sensitivity F_{lim} must therefore satisfy

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

Sources below the IceCube point source sensitivity must therefore satisfy. •

$$r > \left(\frac{L}{4\pi F_{lim}}\right)^{1/2}$$

which translates to a luminosity dependent upper limit on the number density •

$$n \leq \frac{3}{4\pi} \left(\frac{L}{4\pi F_{lim}} \right)^{-3/2}$$

where we used Eq. (1)
$$r \sim \left(\frac{4\pi n}{3}\right)^{-1/3}$$

Source class	Number density [Mpc ⁻³]
powerful blazars	10-9
(FSRQ)	
weaker blazars (BL Lac)	10-7
Starburst galaxies	10-5
Galaxy clusters	10-5
Jetted AGN	10-4
Normal galaxies	10-2

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

distance low enough to produce a multiplet

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

see also Lipari PRD78(2008)083011 Ahlers & Halzen PRD90(2014)043005 Kowalski 2014, Neronov & Semikoz 2018, Ackermann, Ahlers et al. 2019, Yuan et al 2019, Capel, Mortlock, Finley 2020

Summary

- UHECR sources must have sufficient energy budget (ok except for GRBs,TDEs)
- Hillas criterion: Very constraining, but several possibilities for UHE nuclei
- IceCube flux at the level predicted by Waxman & Bahcall (common origin of UHECRs and neutrinos or coincidence)
- Neutrino number density constraints disfavour rare and luminous source classes