

Lesson 2

Direct measurement f galactic cosmic rays

The example of DAMPE

Paolo Bernardini Università del Salento and INFN Lecce, Italy

To do:

- Reconstruct the track in STK and BGO
- Distinguish the primary charge (Z)
- Select a "clean" sample of events
- Estimate event energy (E_{BGO} -> E_{Primary})
- Measure the live time (Δ t)
- Estimate effective acceptance by means of simulation
- Validate simulation by comparison with data

PSD - Charge measurement

Bethe-Bloch formula for energy loss by ionization and atomic excitation

Z-measurement depends on the quality of the track reconstruction

 L_2 path in the 2nd intercepted PSD bar

Double measurement of Z

(1st and 2nd pair of PSD layers)

> PSD_y > PSD_x fragmentation > PSD_y < PSD_x more particles on same x-bar

Aluminum

PSD Y

PSD X

Check on fragmentation

The hadron interaction in PSD or STK is a problem

Analysis is optimized for interaction in the BGO

Nuclei (Z=1-26 and more)

ISCRA school

Energy loss in a thin layer of matter

Measurement uncertainty

Langaus curve

Charge selection (protons as an example)

and simulated samples

P. Bernardini

Charge selection

$$MPV - 3\sqrt{\sigma_{Lan}^2 + \sigma_{Gaus}^2} < E_{PSD} < MPV + 4\sqrt{\sigma_{Lan}^2 + \sigma_{Gaus}^2}$$

Same selection for real data and simulated ones

Parameters (MPV, σ_{Landau} , σ_{Gauss}) are functions on E_{BGO}

Background estimate

Template fit for protons and Helium

The background can be subtracted or taken into account as systematical error

Charge selection vs BGO energy

Flight data

Simulation

In these plots: PSD energy \rightarrow PSD charge

Unfolding procedure (I)

We need the number of events as a function of primary energy

Unfolding procedure (II)

What energy in the calorimeter assuming the primary energy?

By means of the **unfolding** matrix

E_{BGO} => E_{primary}

(estimate on statistical basis)

BGO saturation - white box close to red boxes Y-Z View

Correction by means of simulation

Effect of the saturation correction on the unfolding matrix

Estimate of acceptance

A_{GEOM} = area x solid angle [m² sr]

P. Bernardini

Measurement of CR fluxes Protons (Z=1), Helium (Z=2) and so on

 $\Phi_{z}(E) = \frac{N_{z}(E)}{A_{EFF} \Delta E \Delta t}$

- $\Phi_{z}(E)$ differential flux for the Z element
- $N_{Z}(E)$ number of observed Z events in the energy range
- A_{EFF} effective acceptance, that is selection efficiency (ϵ) times geometrical acceptance (A_{GEOM})
- ΔE width of the energy bin
- Δt total live time

Power law

The change of the spectral index is not so evident

The change of the spectral index is made evident by the factor E^{+3}

Energy-correction affects both the axes

30 months of data (Jan 2016 - Jun 2018)

Spectral hardening followed by softening (measured with unprecedented precision)

Proton spectrum (II)

Helium spectrum

Physical Review Letters 126 (2021) 201102

Hardening at ~ 1.2 TeV

First clear evidence of a softening at ~ 34 TeV

Z-dependent hardening and softening energies are suggested

Proton and He spectra: updates - Neural Network tracking -

DAM

Hardening/softening energies

A rigidity dependence of hardening (500 GV) and softening (15 TV) is favoured by data

Protons + Helium - Bridge between space and ground measurements

Protons + Helium - Bridge between space and ground measurements

Many independent analyses from Li up to Fe

Science Bullettin 67 (2022) 21

67

Iron spectrum

All-particle spectrum

ISCRA school

P. Bernardini

All-particle spectrum

Electron+positron identification (II)

Selected events with Z_{PSD} = 1 Exploiting the imaging CALO-features

BGO imaging to separate electrons and hadrons (I)

ISCRA school

BGO imaging to separate electrons and hadrons (II)

Validation of parameter ζ with beam-test data

Electron+positron spectrum

Uncertainties mainly due to the statistics at high energy

Excellent agreement with standard particle ID

Possible indirect detection of Dark Matter in space

Looking for dark matter lines in photon spectrum

Fig. 1. (Color online) The average SED of the LineSearch and BgoOnly photons from the region with Galactic plane removed.

Summary

DAMPE is "very deep" (~32 X_0) detector in orbit. It works properly since its launch more than 8 years ago. We expect DAMPE will continue to take data for some more years

Long exposure and high energy resolution are the unique tools to find a dark matter signal in the cosmic ray flux (if it exists)

Main DAMPE scientific results

- Evidence for a break at ~1 TeV in the all-electron spectrum
- Clear structures (hardening + softening) have been detected in the proton and Helium spectra
- Z-dependence for hardening and softening is suggested
- Measurement of p+He and all-particle are a bridge toward ground exp.s
- New spectral measurements are in progress (Li, Be, B ... Fe)

Backup slides

CALET ratios

