

Multimessenger Astroparticle Physics

ISCRA Erice 2024

Foteini Oikonomou July 24th 2024

ONTNU

Norwegian University of
Science and Technology

Lecture plan

- Focus on: UHECRs, neutrinos and EM counterparts
- Monday: Generic source properties (Requirements for astrophysical accelerators of high-energy cosmic rays/high-energy neutrinos)
- **Tuesday/Wednesday:** Overview of candidate multimessenger sources
	- Tuesday: (Jetted) Active Galactic Nuclei
	- Wednesday: Non-jetted AGN/Starburst Galaxies/Gamma-ray bursts/ Pulsars/Tidal Disruption Events

ν

CR

γ

GW

Recap of Monday's lecture

UHECR Maximum Energy

Scorecard

Non-jetted AGN

Non-jetted AGN *Swift-BAT 105-month hard-X-ray catalogue 2018*

 $\mathcal{L}_{\mathcal{C}}$

- \bullet LINER
- \bullet Unknown AGN
- Galaxy Clusters
- \bullet X-ray Binaries

X-ray absorbers in AGN

NALs

 $log[\xi$ (erg cm s⁻¹)] = 0-1.5 $log[N_{H} (cm^{-2})] = 18-20$
Velocity = 100-1,000 km s⁻¹ Distance scale = $~1$ pc-1 kpc

BALs

 $log[\xi$ (erg cm s⁻¹)] = 0.5-2.5 $log[N_{H} (cm^{-2})] = 20-23$
Velocity = 10,000-60,000 km s⁻¹ Distance scale = 0.001 pc-500 pc Observed in ~40% of radio loud and radio quiet AGN

v ~ 0.03 - 0.3 c

(Tombesi et al 2010,2011, 2012, 2014)

WAs

 $log[\xi$ (erg cm s⁻¹)] = -1-3 $log[N_{H} (cm^{-2})] = 21-22.5$
Velocity = 100-2,000 km s⁻¹ Distance scale = 0.1 pc-1 kpc

UFOs

 $log[\xi$ (erg cm s⁻¹)] = 3-5 $log[N_{H} (cm^{-2})] = 22-23.5$
Velocity = 10,000–70,000 km s⁻¹ Distance scale = 0.001 pc-10 pc Observed in ~50% of Seyfert I

12

Can UFOs accelerate protons to UHE?

 $R_{\rm IR} \sim 1~{\rm pc} \cdot$ $\overline{\mathcal{L}}$ *L*disk $\sqrt{10^{45} \text{ erg/s}}$ 1/2 $L_{\rm IR}~\sim 0.5 L_{\rm disk}$

Can UFOs accelerate protons to UHE?

Non-jetted AGN contribution to the cosmic-neutrino flux

Infrared selected (ALLWISE) AGN with soft-X-ray weights \sim 32,249 AGN

 2.6σ excess w.r.t. background

-30

FSRQ

NGC 1068

16 arise mainly from the modeling of the photon

 s Cured nucleus. and diffuse as the diffuse astrophysical neutrino backgrounds. The diffuse astrophysical neutrino backgrounds. Seyfert 2 galaxy with heavily obscured nucleus **Sexual Act 2** lar separation of these events from NGC 1068. Among the 79 most contributing events, 63 were included in a previous analysis (23). The $s_{\rm eff}$ is \sim $2\,$ events (26). The matrix \sim \sim High infrared luminosity: high-level of star formation Prototypical nearby Seyfert 2 (14.4 Mpc)

Icecube Coll 2023 - Science

Neutrino production in NGC 1068

ν

 $10⁰$

Y. Inoue et al 2019

see also Kheirandish et al 2021 Anchordoqui et al 2021

Salvatore et al 2023

Neutrino production in NGC 1068

Neutrino production in the cores of AGN

P. Padovani et al.: The neutrino background from non-jetted active galactic nuclei *Padovani etl al 2024*

Scorecard

Starburst galaxies

- High star-formation rate $(> 100 \times$ Milky Way)
- Starburst episodes are short-lived (<108 yrs)
- Centrally driven strong outflows (``superwinds'')
- Column densities Σ_{g} > 0.1 g/cm² and magnetic fields B ~ 1 mG (cf $\Sigma_{g} \approx 0.003$ g/cm², B ~ 5µG in the Milky way)
- TeV gamma-ray detections from NGC 253 (~3 Mpc) & M82 (~4 Mpc) - consistent with point like at VHE
- And a handful more in GeV gamma-rays (NGC4945, NGC1068, Circinus, Arp 220)

NGC 253 M82

C Staelatirst galakieb é nadiated uto vraighte ints E insisteEtterburstidGRBDetc) post-trial significance: 4.2σ

UHECRs from starburst galaxies? The best-fit sky models above 40 EeV obtained with the four catalogs described in Section 4.1 are shown in Figure 10.

the catalogs, which is smeared on the best-fit Fisher angular scale above 40 EeV obtained with each catalog. A further Auger Coil, Apjl., 853, LZ9, 2018, Auger Coil 2022, Ap \bar{g} *Auger Coll, ApJL, 853, L29, 2018, Auger Coll 2022, ApJ 935 (2022) 2, 170*

Lovelace 1976, Waxman 1995, 2001, Blandford 2000, Lemoine & Waxman 2009, Farrar & Gruzinov 2009

$$
L \gtrsim L_B \sim \frac{U_B \cdot \text{Volume}}{t} \sim B^2 R^2 \beta c
$$
\n
$$
L_{\text{min}} \sim 10^{45} \text{ erg/s} \cdot \left(\frac{E}{10^{20} \text{ eV}}\right)^2 \left(\frac{Z}{10}\right)^{-2} \left(\frac{u}{10^{-3}c}\right)^{-1}
$$
\n
$$
\frac{P_{\text{eng et al 2019}}}{P_{\text{eng et al 2019}}}
$$
\n42 \uparrow NGC 1068 \uparrow NGC 1041 \uparrow NGC 11041 \uparrow Circinus
\n $\frac{2}{9}$ 40 \uparrow Circinus
\n33 $\frac{2}{9}$ 39 \uparrow 38 \uparrow 39 \uparrow 38 \uparrow 39 \uparrow 38 \uparrow 39 \uparrow 38 \uparrow 39 \uparrow 39 \uparrow 30 \uparrow 38 \uparrow 39 \uparrow 30 \uparrow 32 \uparrow 33 \uparrow 34 \uparrow 35 \uparrow 36 \uparrow 32 \uparrow 33 \uparrow 36 \uparrow 32 \uparrow 33 \uparrow 34 \uparrow 35 \uparrow 36 \uparrow 37 \uparrow 38 \uparrow 39 \uparrow 30 \uparrow 32 \uparrow 33 \uparrow 34 \uparrow 35 \uparrow 36 \uparrow 37 \uparrow 38 \uparrow 39 \uparrow 30 \uparrow 32 \uparrow 33 \uparrow 34 \uparrow 35 \up

 $L_{1.4 \text{ GHz}}$

Neutrino production in proton-proton interactions Gas reservoirs (Starburst galaxies, Galaxy Clusters…)

 $p + p \rightarrow p + p + N\pi^{+} + N\pi^{-} + N\pi^{0}$ $\pi^{+} \to \mu^{+} + \nu_{\mu} \to e^{+} + \nu_{\mu} + \bar{\nu}_{\mu} + \nu_{e} ...$

Since interaction length $\lambda(E) \propto 1/\sigma(E) \approx \text{const.}$ and meson production spectra $f(E_\pi, E_\nu) \approx f(E_\pi/E_\nu)$

 $For dN/dE \sim E_p^{-\gamma}$ $dN/dE_v \sim dN/dE_\pi \sim E_p^{-\gamma}$

Neutrinos from starburst galaxies: Reservoir model

Neutrinos from starburst galaxies

Palladino et al 2019

Scorecard

Gamma-ray bursts

Discovered serendipitously in 1967

Intense short flashes of light peaking in the 10 keV -1 MeV range

Isotropic equivalent energy release \sim 1052-1055 erg (cf $<$ 10⁴⁹ erg/s in AGN)

 $Rate \sim 1000$ year occur in the Universe

Short (0.3 second) and long (50 second) bursts - Two distinct populations

``Afterglow" fading emission for hours to months

Gamma-ray bursts Fermi-LAT 10 year GRB map

Fermi-LAT 2nd GRB Catalogue,2019

On August 17th, 2017 LIGO and Virgo reported the detection of GWs from the coalescence of a binary neutron star system

An extensive observational campaign localised SGRB in the early type NGC 4993, at $d \sim 40$ Mpc

GW170817 and GRB170817A confirm binary neutron stars as progenitors of SGRBs (pchance \sim 10-8)

Fermi GBM independently detected the sGRB GRB170817A, 1.7s later

LIGO, Virgo, Fermi Coll+ many others, Astrophys.J. 848 (2017) no.2, L12

Binary neutron star mergers: GW170817

UHECR maximum energy

$$
E_{\text{max}} \approx 10^{20} \text{ eV} \cdot Z \cdot \left(\frac{\dot{\varepsilon}_{\text{GRB}}}{10^{51} \text{ erg}}\right)
$$

Very high Lorentz factors

Highly magnetised expanding jet

Waxman 1995, Vietri 1995

Maximum energy OK for protons Nuclei survival in GRB photon fields?

UHECRs from GRBs?

GRB rate:

Thus GRBs may just about satisfy the number density constraint for $B_{\text{EGMF}} \sim 0.1 \text{ nG}$

$$
\rho \approx 1 \times 10^{-9} \text{ Mpc}^{-3} \text{ year}^{-1}
$$

$$
\delta t_{\rm delay} \approx 1.5 \times 10^3 \text{ yr} \cdot \left(\frac{D}{100 \text{ Mpc}}\right)^2 \left(\frac{E}{10^{20} \text{ eV}}\right)^{-2} \left(\frac{\lambda_{\text{coh}}}{1 \text{ Mpc}}\right) \left(\frac{B}{0.1 \text{ nG}}\right)^2
$$

The apparent number density is:

 $n_{\text{eff, jetted TDE}} \sim \delta t \cdot \rho$

And we inferred $n_{\text{UHECR}} \gtrsim 10^{-5} \text{ Mpc}^{-3}$

Neutrino production in GRBs

>100 publications on theoretical expectations: see e.g. review "Neutrinos from GRBs" (Kimura 2022)

Ample photon fields

 $p + \gamma_{\text{jet}} \rightarrow n/p + \pi^{+}/\pi^{0}$

e.g. prompt emission,

 $z = 1$, $\Gamma^2 = 10^5$, $E_\gamma \sim 250 \text{ keV} \rightarrow E_\nu \sim \text{PeV}$

$$
E_p E_\gamma \gtrsim \frac{m_\Delta^2}{4} \left(\frac{\Gamma}{1+z}\right)^2 = 0.16 \text{ GeV} \left(\frac{\Gamma}{1+z}\right)^2
$$

$$
E_\nu \ge 8 \text{ GeV} \left(\frac{\Gamma}{1+z}\right)^2 \left(\frac{E_\gamma}{\text{MeV}}\right)^{-1}
$$

GRB contribution to the cosmic-neutrino flux

Stacked search for neutrinos coincident with prompt GRB emission.

2091 GRBs

Precursor/Afterglow (ΔTafterglow ± 14d): < 24% diffuse neutrino flux 30

IceCube Coll, ApJ 843 (2017) 112 IceCube Coll., Fermi GBM Coll, Apj 939 (2022) 2 +strong limits from GRB221009A (the ``BOAT'') IceCube Coll ApJL 946 L26 (2023) ANTARES Coll MNRAS 469 906 (2017)

Prompt $(\Delta T_{\text{prompt}} \sim I - 100s):$ < 1% diffuse neutrino flux

Binary neutron star mergers: GW170817

wind energy until it expands and becomes transparent. This *Metzger & Berger, ApJ, 746 (2012) 48, 1*

ANTARES, AUGER, ICECUBE, LIGO & VIRGO Coll., ApJ 850 (2017) 2, L35

UHECR

Scorecard

Tidal disruption events

39

- SMBHs are orbited by star clusters
- Millions of stars in random orbits
- Tidal forces may deform, or tear into pieces a star
- One TDE in 104-109 years per SMBH
- For tidal forces to be relevant they must be stronger than the star's self gravity

$$
\frac{GM_{\text{SMBH}}R_{\star}}{R_{t}^{3}} = \frac{GM_{\star}}{R_{\star}^{2}}
$$

Tidal disruption events

For tidal disruption to occur *Rp < Rt*

 R_t must be outside the event horizon for visible TDE The Schwarzschild radius is

$$
M_{\text{SMBH}} \le M_{\star}^{-1/2} \left(\frac{c^2 R_{\star}}{2G}\right)^{3/2} \approx 10^8 M_{\odot} \left(\frac{R_{\star}}{R_{\odot}}\right)^{3/2}
$$

For $R_t > r_s$

$$
\frac{GM_{\text{SMBH}}R_{\star}}{R_{t}^{3}} = \frac{GM_{\star}}{R_{\star}^{2}}
$$

Tidal disruption events

Flare of electromagnetic radiation at high peak luminosity (X-rays)

Located in the core of an otherwise quiescent, inactive galaxy

~100 candidate TDEs observed so far, 3 with jets (hard X-ray spectrum)

Extreme flares can host a relativistic hadronic jet

Typically 50% of the star's mass expected to stay bound to the SMBH and be ultimately accreted

Timescale of months to years

Swift J1644+57

Test case, Swift J1644+57, jetted TDE observed in ``blazar'' mode

Observed for ~600 days, in a small quiescent galaxy in the Draco constellation at $z = 0.35$

$$
E_{\text{max}} \sim 10^{20} \text{ eV} Z \frac{BR}{3 \times 10^{17} \text{ G cm}} \frac{\Gamma}{10}
$$

Swift J1644+57

Test case, Swift J1644+57, jetted TDE observed in ``blazar'' mode

Observed for ~600 days, in a small quiescent galaxy in the Draco constellation at $z = 0.35$

For Swift J1644+57 from radio observations in the outer jet (but dependent on assumed opening angle of jet)

$$
E_{\text{max}} \sim 10^{20} \text{ eV} Z \frac{BR}{3 \times 10^{17} \text{ G cm}} \frac{\Gamma}{10}
$$

$$
BR \gtrsim 1-3 \times 10^{17} \, \text{G cm}
$$

Can TDEs be the main sources of UHECRs?

44

The ``apparent'' source number density must satisfy the observational bound, with *δt* the spread in arrival times

$$
n_{\rm eff} \sim \delta t \cdot \rho
$$

The observed rate of jetted TDEs

 $\rho \approx 10^{-11} - 10^{-10}$ Mpc⁻³ year⁻¹

TDEs can satisfy the number density requireme

From Auger

 $n_{\text{UHECR}} \gtrsim 2 \times 10^{-5} \text{ Mpc}^{-3}$

$$
\delta t_{\text{delay}} \approx 10^5 \text{ yr} \cdot \left(\frac{D}{100 \text{ Mpc}}\right)^2 \left(\frac{E}{10^{20} \text{ eV}}\right)^2
$$

nent if

$$
\frac{1}{2}
$$
 $\left(\frac{\lambda_{\text{coh}}}{1 \text{ Mpc}}\right) \left(\frac{B}{1 \text{ nG}}\right)^2$

Example neutrino spectra (AT2019dsg)

Neutrino production in TDEs

see also Hayasaki et al 2019 Winter, Lunardini 2020 Winter, Lunardini 2022 Banik & Bharda 2022

Neutrinos from TDEs?

Photopion interactions in the jet (conditions similar to AGN/GRB)

One problem is that jetted TDEs are very rare

 $n = 10^{-11}$ Mpc³ cf GRBs, $n = 10^{-9}$ Mpc³

Stacking limits from IceCube (jetted TDEs < 1%, non j etted < 26%)

Non-jetted TDEs 10 -100 times more numerous, but not clear if (where?) they accelerate 1017 eV protons

3 jetted TDEs 40 non-jetted TDEs (mixture of X-ray / UV / optical TDEs)

Updated search in 2022 ZTF TDEs with neoWISE flare (``dust echo'') Y. Necker TeVPA [2022](https://indico.cern.ch/event/1082486/contributions/4878587/attachments/2490304/4276548/accretion_flare_stacking_tevpa2022.pdf) - No excess

IceCube Coll PoS ICRC 2019 Necker et al 2022 (ASAS-SN Coll) Stein et al 2022 (ZTF Coll)

Jetted TDEs: < 3% diffuse neutrino flux

Non-jetted < 26%

TDE contribution to the cosmic-neutrino flux

$\bullet \bullet \bullet$ \bullet \int° 30° 60° 90° 120° 150° \bullet \bullet \bullet \blacksquare \bullet \bullet \rightarrow gal longitude l *plot by D. Ehlert (based on catalogue of Goldtooth et al 2023)*

AT2019dsg + IC191001A

50

AT2019fdr+IC200530A, AT2019aalc+IC191119A

Van Velzen et al 2021.09391

 \bigcap during the first ⇠ 1 year of the flare (*10*). The infrared light curve (blue and purple symbols)

during the first ⇠ 1 year of the flare (*10*). The infrared light curve (blue and purple symbols) $$ during the first wear of the first curve (blue and purple symbols). The international purple symbols of the symbols (blue and purple Combined significance 3.7σ

Example neutrino spectra (AT2019dsg)

Neutrino production in AT2019dsg

see also Hayasaki et al 2019 Winter, Lunardini 2020 Winter, Lunardini 2022 Banik & Bharda 2022

UHECR max

Scorecard

Scorecard

UHECR max

Thank you for your attention!