

GRAVITATIONAL WAVE ASTRONOMY

LECTURE 3: Observations & MMA (prospects)

PATRICIA SCHMIDT ISCRA 2024

SUMMARY

SUMMARY LECTURE 2

- Network of kilometre-scale GW detectors: LIGO, Virgo, KAGRA
 - Sensitive to GWs with frequencies between 20-2000Hz
 - Compact binaries with total mass of $1 \mathcal{O}(a \text{ few } 100) \text{ M}_{\odot}$
- Data analysis for compact binaries:
 - Optimal search = matched filter
 - Bayesian inference to extract binary parameters: masses, spins, source location, orientation, etc.
 - > Assumption: **Noise** is Gaussian and stationary not necessarily true
 - Requirement: Signal model "tutti frutti" approach to modelling compact binaries
 - Analytical perturbation theory (inspiral & ringdown), numerical relativity

WAVEFORMS

SIGNAL MODEL

P Schmidt, Univ. of Birmingham

MODELLING TECHNIQUES

NUMERICAL RELATIVITY (NR)

- Only few analytic solutions to Einstein field equations known
 - No analytic solutions to the general-relativistic two-body problem
 - NR is a key ingredient to understanding GW observations!
- Breakthrough in 2005 [Pretorius, Baker+, Campanelli+]:
 - First stable binary evolutions
 - Extraction of the GW signal
 - Computationally expensive
 - Time consuming
- Many challenges remain!

Schmidt, Univ. of Birmingham

エ Φ $\operatorname{Re}(\Psi_4) \cdot \Gamma,$

Extract gravitational waves

[Boyle+ inc. PS, CQG]

1/q

°051

300

MODELLING TECHNIQUES

NUMERICAL RELATIVITY (NR)

- Open-source NR codes: <u>Einstein Toolkit</u>, <u>NRpy+</u>
- Recommended literature: Baumgarte & Shapiro, Numerical Relativity (Cambridge University Press)

[Credit: UIB]

INSPIRAL-MERGER-RINGDOWN WAVEFORM MODELS CHEATSHEET

	Phenom	EOB	NR Surrogates			
Domain	FD & TD	TD (&FD)	TD			
Physics	Precession Higher modes Some tides	Precession Higher modes Some tides Eccentricity (AS)	Precession Higher modes Eccentricity (NS)			
Efficiency	Fast	Medium to slow	Slow			
Accuracy	Good	Good	Best			
Caveats	Systematics due to approximations & missing physics	Systematics due to approximations & missing physics	Only for massive BBH (can be hybridised) Limited parameter space			

WAVEFORMS

PHENOMENOLOGICAL WAVEFORM MODELS

- Closed-form expressions utilising analytical & numerical inputs
- Analytical information from PN/EOB + pseudo terms
- NR calibration in the strong-field regime
- 3 regimes: inspiral, intermediate, merger-ringdown

Schmidt, Univ. of Birmingham

[Ajith+, Santamaria+, Husa+, Khan+, Hannam+, PS+, Pratten+, Garcia-Quiros+, Hamilton+, Estelles+]

WAVEFORM MODELS

EFFECTIVE-ONE-BODY

Two-body dynamics replaced by particle with reduced mass moving in effective metric:

Equations of motions:

$$\dot{\mathbf{r}} = (A/B)^{1/2} \,\partial_{\mathbf{p}_{\mathbf{r}_{*}}} \hat{H}_{\mathrm{EOB}}$$
$$\dot{\varphi} = \partial_{p_{\varphi}} \hat{H}_{\mathrm{EOB}}$$

Factorised waveform:

$$h_{\ell m}^{\rm EOB} = \theta \left(t_m - t \right) h_{\ell m}^{\rm insplun}$$

$$\begin{split} \dot{p}_{r_*} &= -(A/B)^{1/2} \,\partial_r \hat{H}_{\rm EOB} \\ \dot{p}_{\varphi} &= \hat{\mathcal{F}}_{\varphi} \\ & \text{NR calibration} \\ \\ & \text{ge} \, \left(t\right) + \theta \left(t - t_m\right) h_{\ell m}^{\rm ringdown} \left(t\right) \end{split}$$

[Credit: G. Pratten]

WAVEFORM MODELS

NUMERICAL RELATIVITY SURROGATES

- NR simulations are computationally expensive
 - Limited coverage of the full binary parameter space
- Are pure NR-based waveform models achievable, i.e. no analytic approximations?
 - NR surrogate models [Canizares+ ,Field+, Blackman+, Varma+]
 - Continuous interpolation between discrete waveforms [Field+, Galley+]
 - ► 5D precessing NR surrogate around GW150914:
 - ~270 NR simulations spanning ~20 orbits [Blackman inc. PS+]
 - > 7D precessing NR surrogate between mass ratios 1-4 and spins ≤ 0.8
 - ~1528 NR simulations [Boyle+ inc. PS]

WAVEFORMS

WHAT PHYSICS IS INCLUDED?

BBH models: Highly accurate for circular binaries with aligned spins

- Including higher order multipoles
- Verified up to moderate mass ratios + additional gravitational selfforce information
- Lack of simulations with large spins & long inspirals
- Some eccentricity (lots of ongoing work & recent progress)

Precessing BBH: modelled only approximately

Little to no calibration to NR

BNS: low-order analytic f-mode tides + some calibration to NR simulations

- No complete model including post-merger
- NSBH: no precession; no complete model including post-merger

MULTIMESSENGER ASTROPHYSICS WITH GRAVITATIONAL WAVES

GW OBSERVATIONS

Schmidt, Univ. of Birmingham

01-03 HIGHLIGHTS

04 PERFORMANCE

FOURTH OBSERVING RUN

- O4a: May 24, 2023 January 16, 2024
- Duty cycle: H1 (68%), L1(69%)

Network duty factor [1368975618-1389456018]

- Double interferometer [53.4%]
- Single interferometer [29.7%]
- No interferometer [16.6%]
- O4b: April 10, 2024 June 9, 2025
- Duty cycle: H1(54%), L1(74%), V1(79%)

P Schmidt, Univ. of Birmingham

https://gwosc.org/detector_status

04 PERFORMANCE

FOURTH OBSERVING RUN

As of July 25th @ 11.00 CEST:

118 significant detection candidates

- 2175 low-significance detection candidates
- Binary detection rate:
 - ~3 events per week
- Public alerts now also for
 - Low-significance triggers
 - Early warning
 - Automatically issued within ~30s

lidates

Can

ction

ete

Cumulative

GW170817

inspiral: GW170817

A new way of probing the structure of neutron stars!

Schmidt, Univ. of Birmingham

> On August 17th 2017 at 12:41:04 UTC (14:41), LIGO detected GWs from a binary neutron star

A GW MULTI-MESSENGER EVENT

- Coincident discovery of a short GRB by Fermi
- Observation across the entire EM spectrum

[Credit: LVK, Jennifer Johnson/NASA, Villar+]

16

3 Li	4 B6	mei	merging neutron stars					exploding massive stars 📓				5 B	o c	r z	8 O	
11 Na	12 Mg	dyir	dying low mass stars 🛛 🚺				exploding white dwarfs 🧑				13 Al	14 au	15 P	16 S		
19 - K	20 Ca	21 Se	22 Ti	23 V	24 Cr	25 Min	26 Fe	27	28 Ni	29 Cu	30 Zh	31 Ga	32 Ge	33 As	34 Se	
37 Rb	38 Gr	39 Y	40 Zr	41 NB	42 Mo	43 To	44 Ru	45 Rh	45 Pd	47 Ag	48 Cd	49 Li	50 Sn	51 95	52 Te	
55 Os	56 Ba		2 E	79 F2	t‡ ≩	75 Re	76 Cs	77 37	78 Pt	79 Au	80 Hg	61 Ti	er p	83 Bi	84 Po	
87 Fr	88 Ra															
			57	58	59	60	61	62	63	64	65	66	67	68	69	
			La 89	Ce 90	Pr 91	Nd 92	Pm	Sm	Eu	Gđ	Tb	Dy	Ho	Er	Tm	
			Ac	Th	Pa	U										

Tidally induced quadrupole moment

WAVEFORMS

EFFECT ON THE GRAVITATIONAL WAVE

- Energy goes into deforming the neutron stars
- Enhances GW emission relative to black holes
- Leading-order effect at 5PN: builds up a clean dephasing from ~400Hz

Leading-order phase contribution characterised by weighted combination:

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_1}{(m_1 + m_2)^5}$$

[Flanagan&Hinderer, Favata, Wade]

P Schmidt, Univ. of Birmingham

EOS CONSTRAINTS FROM GW170817

EOS CONSTRAINTS FROM GW170817

- neutron star equation of state
- follow-up strategies

GW170817: A BRIGHT STANDARD SIREN

- GWs give the luminosity distance & inclination distributions
- EM identifies the host galaxy (sky position) from which we can determine the Hubble velocity distribution

Schmidt, Univ. of Birmingham

[LVC, Nature 551,85-88 (02 November 2017)]

GW190425

- BNS with SNR ~13 observed in LIGO Livingston in Q3a
- Component masses consistent with neutron stars
- No improvement on EOS constraints (consistent but less constraining)

Schmidt, Univ. of Birmingham

LVK, ApJ L 892:L3 2020

GW190814

- Identified in low-latency by LIGO-Livingston & Virgo
- 3-detector SNR ~ 25
- Latest skyway (green) issued 13.5 hours after the detection

BBH OR NSBH?

GW190814

A binary black hole or a neutron star — black hole binary?

P Schmidt, Univ. of Birmingham

[LVC, ApJL 896:L44 (2020)]

The secondary is heavier than known

BBH OR NSBH?

GW190814 – WHAT IS THE NATURE OF THE SECONDARY?

Difficult to reconcile with neutron star maximum mass constraints

P Schmidt, Univ. of Birmingham

No tidal information obtained

Asymmetric mass ratio suppresses tidal effects

 $\delta\varphi_{\text{tidal}} \propto -\frac{117}{16} \frac{q^4}{(1+q)^5} \frac{\Lambda_2}{X_1 X_2} x^{5/2} \times (\text{PN Corrections}); \ q \le 1$

Low black hole spin makes tidal disruption unlikely

[LIGO-DCC G2000963]

GW230529

L1-only detection by 3 matched-filter searches with SNR ~ 11

[LVK, arXiv:2404.04248]

GW230529

- Primary mass $< 5M_{\odot}$ at 99% credibility
- Secondary mass consistent with a neutron star

Primary mass m_1/M_{\odot}	$3.6^{+0.8}_{-1.2}$
Secondary mass m_2/M_{\odot}	$1.4^{+0.6}_{-0.2}$
Mass ratio $q = m_2/m_1$	$0.39^{+0.41}_{-0.12}$
Total mass M/M_{\odot}	$5.1\substack{+0.6 \\ -0.6}$
Chirp mass \mathcal{M}/M_{\odot}	$1.94\substack{+0.04 \\ -0.04}$
Detector-frame chirp mass $(1+z)\mathcal{M}/M_{\odot}$	$2.026\substack{+0.002 \\ -0.002}$
Primary spin magnitude χ_1	$0.44\substack{+0.40 \\ -0.37}$
Effective inspiral-spin parameter $\chi_{\rm eff}$	$-0.10\substack{+0.12 \\ -0.17}$
Effective precessing-spin parameter $\chi_{\rm p}$	$0.40\substack{+0.39 \\ -0.30}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	201^{+102}_{-96}
Source redshift z	$0.04\substack{+0.02 \\ -0.02}$

Mass of compact object (M_{o})

Schmidt, Univ. of Birmingham

[Image credit: S. Galaudage/Observatoire de la Côte d'Azur]

GW230529: BLACK HOLES OR NEUTRON STARS?

Source most likely an NSBH after accounting for uncertainties in population models and EOS constraints

	$\chi_1, \chi_2 \le 0.99$	$\chi_1, \chi_2 \le 0.05$	Power law + Dip + Break
$P(m_1 \text{ is NS})$	$(2.9\pm0.4)\%$	< 0.1%	$(8.8\pm2.8)\%$
$P(m_2 \text{ is NS})$	$(96.1 \pm 0.4)\%$	> 99.9%	$(98.4 \pm 1.3)\%$

Assuming an NSBH, the minimum black hole mass in NSBH is lower than previously inferred: $\sim 6M_{\odot} \rightarrow \sim 3.4M_{\odot}$

Schmidt, Univ. of Birmingham

WHAT ABOUT MATTER SIGNATURES?

[Bartos+ 2019]

WHAT ABOUT MATTER SIGNATURES?

- Unequal masses & anti-aligned BH spin: indistinguishable from BBH
 - NSBH
 - BBH
- Comparable masses & aligned BH spin: tidal disruption
 - NSBH
 - BBH

Schmidt, Univ. of Birmingham

Disruption probability: 0.1 with $M_{\rm rem} \leq 0.052 M_{\odot}$ at 99% credibility

GW230529: RATES & EM PROSPECTS

(Provisional) Update of local NSBH merger rate: $30 - 200 \,\mathrm{Gpc}^{-3}\mathrm{yr}^{-1}$ (note after O3: $18 - 44 \,\mathrm{Gpc}^{-3}\mathrm{yr}^{-1}$)

lower mass gap merger rate!

Schmidt, Univ. of Birmingham

[LVK, arXiv:2404.04248]

INTERMEDIATE MASS BLACK HOLE

GW190521

Very massive binary black hole:

$$142^{+28}_{-16}M_{\odot}$$

Schmidt, Univ. of Birmingham

EM BRIGHT BBH?

- Mergers surrounded by gas (e.g. in AGN disks) can create counterparts
 - Bartos+2016, McKernan+ 2019, Rodriguez-Ramirez+ 2023, etc)
- Claim of EM counterpart to GW190521 by [Graham+, PRL 2020]
 - Redshift measurement

Schmidt, Univ. of Birmingham

Interacting shocks, mini-disk interactions, accretion onto remnant black hole & jet formation (see e.g. Murase+ 2016,

THE NEAR FUTURE

RUN EXTENSION & 05

O4 extended until June 9th, 2025

See https://observing.docs.ligo.org/plan/

Schmidt, Univ. of Birmingham

Virgo target sensitivity and entry date for O5 are currently being assessed

THE NEAR FUTURE

LIGO/VIRGO UPGRADES?

- A# a possible targeted upgrade to the existing LIGO facilities (see <u>https://dcc.ligo.org/LIGO-T2200287/public</u>)
 - A factor of 2 improvement in sensitivity (larger test masses, improved seismic isolation & mirror coatings, higher laser power, etc.)
 - Similar upgrade proposal for Virgo (V_nEXT)

	Range [Mpc]					
Configuration	BNS	BBH	$t_{\text{early}}[\min]$	$z_{ m max}$	ho	
O3 LLO	130	1200	0.3	1.3	(
July 2022 LLO	120	1200	0.5	1.5	(
A+	350	2600	2.7	3.2	-	
A+ Wideband	290	2300	3.7	3.5	6 4	
A^{\sharp}	600	3700	6.2	5.4	6 4	
$A^{\sharp} (A+ coatings)$	440	3000	6.1	4.6	6 4	
A [♯] Wideband	490	3300	6.8	5.5	Ĺ	
A^{\sharp} Wideband (A+ coatings)	400	2900	6.7	4.7	Z	

Schmidt, Univ. of Birmingham

Estimated time before merger of an optimally-oriented BNS with $1.4 + 1.4 M_{\odot}$ at z = 0.03 such SNR ≥ 8 in a given detector

3G DETECTORS

THE NEXT GENERATION

Cosmic

1 mm minung

P Schmidt, Univ. of Birmingham

3G DETECTORS

THE NEXT GENERATION

- New GW & MMA sources!

3G DETECTORS

THE NEXT GENERATION

- > 20/40: cosmic explorer with 20/40 km long arms
- > ET: triangular Einstein telescope with 10km long arms
- H/L/A: Hanford, Livingston, Aundha with A# sensitivity
- ► Assumed BNS rate: 320 Gpc⁻³ yr⁻¹
- Observation time: 1 year
- Minimum frequency: 5 Hz

[Corsi+ 2024 & Gupta+ 2023]

INTO SPACE

LISA: DISCOVERING GWS IN SPACE

- Sensitivity range: 0.1mHz 1Hz
- Access to new sources:
 - Galactic double white dwarfs
 - Supermassive black hole binaries
 - Extreme mass ratio inspirals
 - TDEs

