

Ground-Based Gamma-Ray Astronomy

Kathrin Egberts Universität Potsdam

> Deutsche Forschungsgemeinschaft

Gefördert durch

DFG

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Outline

0. Introduction
 I. Detection Principles and Instruments

- II. Ground-Based Galactic Gamma-Ray Astronomy
- III. Ground-Based Extragalactic Gamma-Ray Astronomy, Non-Gamma Science
- IV. Outlook/Future

Outline

0. Introduction I. Detection Principles and Instruments

II. Ground-Based Galactic Gamma-Ray Astronomy

- III. Ground-Based extragalactic Gamma-Ray Astronomy, Non-Gamma Science
- IV. Outlook/Future

0. Introduction to TeV Astronomy

- TeV photons probe the non-thermal universe
- Produced by energetic particles: cosmic rays (& dark matter?)
- Up to the knee in the CR spectrum (~PeV energies): sources assumed to be Galactic
- Standard paradigm: diffusive shock acceleration in supernova remnants
- Presumed extragalactic sources: Active Galactic Nuclei, gamma-ray bursts..

→ Observations of the Extreme Universe

0. Introduction to TeV Astronomy

Observations of cosmic rays via neutral messengers

Cosmic-ray accelerators seen as gamma-ray sources

cosmic-ray propagation as diffuse gamma-ray emission

At TeV energies, we are close to the limit of Galactic accelerators and the observational limit of extragal. sources (due to gamma-gamma absorption)

From Particles To Radiation

- mechanism hadronic gas gas Pion production and decay $p + N_{gas} \rightarrow \pi^{o} + \ldots \rightarrow \gamma \gamma$ Inverse Compton scattering $e^{\pm} + \gamma_{LE} \rightarrow e^{\pm} + \gamma_{HE}$ е mechanisms Mur. A^{VUUU} leptonic Bremsstrahlung е nn e^{\pm} + N_{gas} \rightarrow e^{\pm} + γ е е Synchrotron radiation N JUNG $e^{\pm} + B \rightarrow e^{\pm} + v$
- Need for target "material": interstellar medium, radiation fields, B fields
- γ-rays are the line-of-sight integral of CR density and target material:

 $F_{\gamma}(E_{\gamma}) = \int dI_{d} \int d\sigma_{CR+t \rightarrow \gamma}/dE_{CR} \cdot n_{t}(I,b,I_{d}) \cdot n_{CR}(I,b,I_{d},E_{CR}) dE_{CR}$

From Particles To Radiation

mechanism hadronic Pion production and decay Neutral pior Synchrotron decay $p + N_{gas} \rightarrow \pi^{o} + ... \rightarrow \gamma \gamma$ (X-ray: HEX-P) (TeV: CTA) Hadronic accelerators Inverse Compton scattering $e^{\pm} + \gamma_{LE} \rightarrow e^{\pm} + \gamma_{HE}$ mechanisms leptonic Bremsstrahlung Inverse Synchrotron Compton e^{\pm} + N_{gas} \rightarrow e^{\pm} + γ (X-ray: HEX-P) Scattering (TeV: CTA) Leptonic accelerators Mori et al. Synchrotron radiation $e^{\pm} + B \rightarrow e^{\pm} + \gamma$ 10 Crab nebula SED 10 10 vFv [erg cm⁻² s⁻¹] 10-10 10-1 10-12 10-13 10²⁹10³ 10¹⁹ Univers v [Hz] [R. Zanin]

Observations in the electromagnetic spectrum

Observations in the electromagnetic spectrum

Ground-based detection at VHE energies via extensive air showers

Observations in the electromagnetic spectrum

Ground-based detection at VHE energies via extensive air showers

Development of gamma-ray air showers

Air Showers

Development of cosmic-ray air showers

Air Showers

Detailed air-shower simulations contain

Cherenkov Radiation

- In a medium with refractive index n:
- Speed of light: c/n
- Charged particle moving with v>c/n emits Cherenkov light
- Emission angle:

$$\cos\theta_c = \frac{1}{n\beta}$$

~1° in air, ~40° in water

one of the favourite techniques for detecting relativistic air-shower particles

Charged air-shower particles can emit Cherenkov light either in the **air** or in a suitable medium like **water**

Two Techniques for Ground-Based Observations

Two Techniques for Ground-Based Observations

Particle Detector Arrays

Cherenkov light in water

24/7 observations

observation of full sky above detector

Imaging Atm. Cherenkov Telescopes

Cherenkov light in atmosphere

(moon-less) night observations

small field of view/ pointed observations

Cherenkov light on the ground

Gamma

- ~ 100 Photons per TeV and m²
- large mirrors
- dark skies
- short exposures (~ 10 ns)

Cherenkov light on the ground

Cherenkov light on the ground

Stereoscopy for better direction reconstruction

Image of source is somewhere on the image axis ...

Need several views !

....

Background discrimination / γ-hadron separation

Electromagnetic shower Hadronic shower

Difference between elmag. and hadronic showers used for classification

ma-Ray Astronomy . Erice . July 2024 23

Background discrimination / y-hadron separation

Background Subtraction

- Necessary because of imperfect gamma/ hadron separation
- Performed in background measurements in the FoV (+ assumption on system response)
- Iterative exclusion of regions with gamma-ray emission
- Advantage: 1st order cancelation of systematics related to condition of instrument and atmosphere
- Disadvantage: Results in subtraction of any large-scale gamma-ray emission together with the background
- \rightarrow method optimised for sources much smaller than the field of view

Current IACT Instruments

Cherenkov Telescope Array Observatory

Particle Detector Arrays

- Particle detectors can be scintillators or water tanks
- Detection of the tail of the air shower reaching the ground
 → preferably in *high locations* / higher energy threshold
- Observables: *Particle density* and *time of arrival* at each detector position

Particle Detector Arrays

- Particle detectors can be scintillators or water tanks
- Detection of the tail of the air shower reaching the ground
 → preferably in *high locations* / higher energy threshold
- Observables: Particle density and time of arrival at each detector position

- Time gradient and center of gravity used for direction
- Energy from total signal
- Uniformity for gamma/ hadron separation

Hadron Background

- Patchiness of the signal \rightarrow compactness parameter
- Subtraction of remaining background: Direct integration from the data collected prior to and after the source transited in local coordinates (θ,φ)

Current Particle Detector Array Instruments

H.E.S.S.N Cherenkov Telescope Array Observatory

Sensitivities

Two Techniques for Ground-Based Observations

TeV Observations

A rapidly developing field

with a large variety in sources!

Mathieu de Naurois (2021)

Outline

0. Introduction
 I. Detection Principles and Instruments

- II. Ground-Based Galactic Gamma-Ray Astronomy
- III. Ground-Based Extragalactic Gamma-Ray Astronomy, Non-Gamma Science
- IV. Outlook/Future

Lecture II

Outline

0. Introduction
 I. Detection Principles and Instruments

II. Ground-Based Galactic Gamma-Ray Astronomy

- III. Ground-Based Extragalactic Gamma-Ray Astronomy, Non-Gamma Science
- IV. Outlook/Future

Lecture II

Two Techniques for Ground-Based Observations

Galactic Gamma-Ray Astronomy

Cosmic-ray accelerators: gamma-ray sources

with ≳30 TeV gamma-rays probing CRs up to the knee

Cherenkov Telescope Array Observatory

H.E.S.S.

The View on our Milky Way

The H.E.S.S. Galactic Plane Survey

- Major effort of almost 10 years of pointed observations 2004 - 2013
- 2673 hours of highquality data
- Covered area:
 I = 250° to 65°,
 |b| < 3°
- Inhomogeneous exposure

H.E.S.S. Collaboration, A&A 2018

The View on our Milky Way

 Detection of 78 VHE sources along the plane,

- A PeVatron in the Galactic Center,
- And a component of large-scale diffuse emission

H.E.S.S. Collaboration, A&A 2018

Pulsar Wind Nebulae

Powerful winds driven by pulsars

Consisting of electromagnetic energy and highly relativistic particles

Wind interaction with ambient medium gives rise to a complex structure

Many known X-ray PWN identified as TeV emitters and almost all of the highest spin-down power radio pulsars have associated TeV emission

Efficient particle accelerators (leptonic emission)

Exist in many sizes, shapes, morphologies, distances to PSR

Many of our unidentified sources may be PWN

Supernova Remnants

Shells created by a supernova explosion ($E \sim 10^{51}$ erg) Consist of a mixture of supernova ejecta and shocked circumstellar medium Initial velocities $>\sim$ 10,000 km/s, young SNRs (\sim 500 yr) \sim 2000-5000 km/s Site of particle acceleration by 1st order Fermi mechanism ~250 Galactic SNRs identified as extended radio sources (Green's catalog)

Morphology

correlation with gas? \rightarrow hadronic origin correlation with radio? \rightarrow leptonic origin

 \rightarrow angular resolution crucial!

Going from single sources to source populations

Only a small and based subsample of sources visible Requires population synthesis to derive population properties

Do SNRs accelerate cosmic rays up to the knee?

- Besides differentiation of leptonic vs hadronic, need spectral information!
- Most SNRs (and other sources as well) feature cutoffs at few TeV

Could be timing problem...

What About Other Experiments?

Beautiful view on the Northern Hemisphere

What About Other Experiments?

What About Other Experiments?

HAWC - H.E.S.S. Comparison

In the region of overlap

Completely different pictures of the same sky

HAWC - H.E.S.S. Comparison

In the region of overlap

Consequence of the different point spread functions!

Example of a Very Extended Source

Geminga and Monogem pulsars surrounded by a spatially extended region (~20 pc) emitting multi-TeV gamma-rays

TeV halos as new source class

- Diffusion coefficient two orders of magnitude lower?
- H.E.S.S. results dependent on the applied background subtraction technique

HAWC

Crucial for IACTs: subtraction of the background of charged cosmic rays!

Example of a Very Extended Source

HAWC

Where are the PeVatrons?

Diffuse Emission in the Galactic Centre ridge

H.E.S.S. Collaboration, Nature 2016

Cosmic-ray density from ratio of gamma-ray luminosity and gas density

 \rightarrow Central accelerator located within 10 pc from GC, injecting CRs continuously over more than 1000 years

Where are the PeVatrons?

- Gamma-ray spectrum up to 50 TeV with no (statistically significant) energy cut-off
- From transport equation for p injected at GC and fitted to H.E.S.S. data: a pure power-law primary proton spectrum with index ~2.4
 - 68% CL with cut-off 2.9 PeV
 - 90% CL with cut-off 0.6 PeV
 - 95% CL with cut-off 0.4 PeV

\rightarrow Indirect evidence for the first PeVatron!

PeVatrons everywhere!

12 sources with energies between 100 TeV and 1.4 PeV!

$^{15} \rightarrow$ consequence of the LHAASO sensitivity at E~100 TeV

Significance (a)

Flux at 100 TeV (CU) RA (°) dec. (°) Significance above 100 TeV (xo) E_{max} (PeV) Source name LHAASO J0534+2202 83.55 22.05 17.8 0.88 ± 0.11 1.00(0.14) LHAASO J1825-1326 276.45 -13.4516.4 0.42 ± 0.16 3.57(0.52) LHAASO J1839-0545 279.95 -5.75 7.7 0.21 ± 0.05 0.70(0.18) LHAASO J1843-0338 280.75 -3.65 8.5 0.26 - 0.10+0.16 0.73(0.17) LHAASO J1849-0003 282.35 -0.05 10.4 0.35 ± 0.07 0.74(0.15) LHAASO J1908+0621 287.05 6.35 17.2 0.44 ± 0.05 1.36(0.18) 7.4 LHAASO J1929+1745 292.25 17.75 0.71-0.07+0.16 0.38(0.09) LHAASO J1956+2845 299.05 28.75 7.4 0.42 ± 0.03 0.41(0.09) LHAASO J2018+3651 304.75 36.85 10.4 0.27 ± 0.02 0.50(0.10) LHAASO J2032+4102 308.05 41.05 10.5 1.42 ± 0.13 0.54(0.10) LHAASO J2108+5157 317.15 51.95 8.3 0.43 ± 0.05 0.38(0.09) LHAASO J2226+6057 336.75 60.95 13.6 0.57 ± 0.19 1.05(0.16)

Galactic latitude (deg)

Cherenkov Telescope Array Observatory

Kathrin Egberts . Ground-Based Gamma-Ray Astr

Diffuse Emission at TeV energies (IACTs)

Complicated due to the bright sources everywhere

Cherenkov Telescope Array Observatory

H.E.S.S. Collaboration, PRD 2014

Diffuse Emission at TeV energies (IACTs)

H.E.S.S. Collaboration, PRD 2014

Complicated due to the bright sources everywhere

Cherenkov Telescope Array Observatory

Diffuse Emission (Particle Detector Arrays)

- Many recent measurements
- Careful in detail comparisons
 → different regions, different signal!
- Large contribution of diffuse emission to total emission

TeV sky dominated by sources or diffuse emission?

Particle Detector Arrays

Wide fields of view

Angular resolution of ~0.5 deg

Large duty cycle

TeV sky dominated by sources or diffuse emission?

Causes double drawback for IACTs:

Univer

9

1. limits the data set and the region to be probed 2. renders background estimation from within FoV challenging \rightarrow underestimation of diffuse signal in IACTs

TeV sky dominated by sources or diffuse emission?

Helps not only in resolving structures but also in the discrimination of γ-ray sources

measurable diffuse = truly diffuse + unresolved sources

vivers

 $\longrightarrow \text{Overestimation of diffuse signal in air shower particle detectors}_{\mathcal{A}_{\mathcal{B}}}$

Outline

0. Introduction
 I. Detection Principles and Instruments

- II. Ground-Based Galactic Gamma-Ray Astronomy
- III. Ground-Based Extragalactic Gamma-Ray Astronomy, Non-Gamma Science
- IV. Outlook/Future

Lecture II

Outline

0. Introduction
 I. Detection Principles and Instruments

- II. Ground-Based Galactic Gamma-Ray Astronomy
- III. Ground-Based Extragalactic Gamma-Ray Astronomy, Lecture III Non-Gamma Science IV. Outlook/Future

Lecture II

Extragalactic Gamma-Ray Astronomy

Distances get larger, angular scales smaller

LMC

Cen A 0.45 0.40 -42° 56' 00.0" PSF 0.35 58' 00.0" - 0.30 dec. (J2000) 0.25 -43° 00′ 00.0″-0.20 02' 00.0" -0.15 0.10 04' 00.0" 0.05 5σ significance 06' 00.0' 12.00 s 13 h 25 min 00.00 s 26 min 00.00 s 48.00 s 36.00 s 24.00 s RA (J2000) VLA radio surface brightness (smoothed and as contours)

PKS 2155-304

22^h05^m00^s 22^h00^m00^s 21^h55^m00^s 21^h50^m00^s Right Ascension (J2000)

Observable energies are smaller as well

Absorption in extragalactic background light (EBL)

exponential flux decay, depending on gamma energy and EBL opacity (redshift)

We see CR "PeVatrons" only in Galactic sources!

Gamma energies do not reflect maximum energy reached by the system

Time-Variability!

- \rightarrow Possibility to probe size of emission region
 - \rightarrow Timing as crucial observable
 - \rightarrow Requires large instantaneous sensitivity

Kathrin Egberts . Ground-Based Gamma-Ray A

Sensitivity and Timing

Strong time variability, sometimes on very short scales (e.g. short GRBs ~few seconds) and unpredictable

Catching the event on short time scales → survey instruments

Short signal → large instantaneous sensitivity of **pointed instruments**

> IACTs can typically repoint in < 1 min if observations are possible

Crucial: Coordination with other instruments for triggering of observations

Kathrin Egberts . Ground-Based Gamma-Ray A

Challenge for the Extragalactic Sky: Timing

Challenge for the Extragalactic Sky: Timing

Kathrin Egberts . Ground-Based Gamma-Ray Astronomy . Erice . July 2024 68

Univers

Challenge for the Extragalactic Sky: Timing

see Poster by Tiffany Collins

 \rightarrow Requires automated systems that filter information with very short turn-around times and initiates follow-up observations

Transient Phenomena

Ground-Based GRB Detections

All ground-based gamma-ray instruments have been hunting GRBs for more than a decade

Then, in 2019...

Article Teraelectronvolt emission from the γ -ray **burst GRB 190114C** ray burst afterglow phase https://doi.org/10.1038/s41586-019-1750-x MAGIC Collaboration Received: 10 May 2019 Accepted: 2 September 2019 Long-duration y-ray bursts (GRBs) are the most luminous sources of electromagnetic radiation known in the Universe. They arise from outflows of plasma with velocities Published online: 20 November 2019 near the speed of light that are ejected by newly formed neutron stars or black holes (of stellar mass) at cosmological distances^{1,2}. Prompt flashes of megaelectronvoltenergy y-rays are followed by a longer-lasting afterglow emission in a wide range of energies (from radio waves to gigaelectronvolt y-rays), which originates from synchrotron radiation generated by energetic electrons in the accompanying shock waves^{3,4}. Although emission of y-rays at even higher (teraelectronvolt) energies by other radiation mechanisms has been theoretically predicted⁵⁻⁸, it has not been previously detected^{7.8}. Here we report observations of teraelectronyolt emission from the y-ray burst GRB 190114C. y-rays were observed in the energy range 0.2-1 teraelectronvolt from about one minute after the burst (at more than 50 standard deviations in the first 20 minutes), revealing a distinct emission component of the afterglow with power comparable to that of the synchrotron component. The observed similarity in the radiated power and temporal behaviour of the teraelectronvolt and X-ray bands points to processes such as inverse Compton upscattering as the mechanism of the teraelectronvolt emission⁹⁻¹¹. By contrast, processes such as synchrotron emission by ultrahigh-energy protons^{10,12,13} are not favoured because of their low radiative efficiency. These results are anticipated to be a step towards a deeper understanding of the physics of GRBs and relativistic shock waves

Very high energy particle acceleration deep in the gamma-

H. Abdalla¹, R. Adam²⁷, F. Aharonian^{3,4,5}, F. Ait Benkhali³, E.O. Angüner¹⁹, M. Arakawa³⁸, C. Arcaro¹, C. Armand²², H. Ashkar¹⁷, M. Backes^{8,1}, V. Barbosa Martins³⁴, M. Barnard¹, Y. Becherini¹⁰, D. Berge³⁴, K. Bernlöhr³, E. Bissaldi^{45,44}, R. Blackwell¹³, M. Böttcher¹, C. Boisson¹⁴, J. Bolmont¹⁵, S. Bonnefoy³⁴, J. Bregeon¹⁶, M. Breuhaus³, F. Brun¹⁷, P. Brun¹⁷, M. Bryan⁹, M. Büchele³³, T. Bulik¹⁸, T. Bylund¹⁰, M. Capasso²⁶, S. Caroff¹⁵, A. Carosi²², S. Casanova^{20,3}, M. Cerruti^{15,43}, T. Chand¹, S. Chandra¹, A. Chen²¹, S. Colafrancesco²¹[†], M. Curvło¹⁸, I.D. Davids⁸, C. Deil³, J. Devin²⁴, P. deWilt¹³, L. Dirson², A. Djannati-Atai²⁸, A. Dmytriiev¹⁴, A. Donath³, V. Doroshenko²⁶. J. Dyks³¹, K. Egberts³², G. Emery¹⁵, J.-P. Ernenwein¹⁹, S. Eschbach³³, K. Feijen¹³, S. Fegan²⁷, A. Fiasson²², G. Fontaine²⁷, S. Funk³³, M. Füßling³⁴, S. Gabici²⁸, Y.A. Gallant¹⁶, F. Gaté²², G. Giavitto³⁴, L. Giunti²⁸, D. Glawion²³, J.F. Glicenstein¹⁷, D. Gottschall²⁶, M.-H. Grondin²⁴, J. Hahn³, M. Haupt³⁴, G. Heinzelmann², G. Henri²⁹, G. Hermann³, J.A. Hinton³, W. Hofmann³, C. Hoischen³², T. L. Holch⁷, M. Holler¹², D. Horns², D. Huber¹², H. Iwasaki³⁸, M. Jamrozy³⁵, D. Jankowsky³³, F. Jankowsky²³, A. Jardin-Blicq³, I. Jung-Richardt³³, M.A. Kastendieck², K. Katarzyński³⁶, M. Katsuragawa³⁹, U. Katz³³, D. Khangulyan³⁸, B. Khélifi²⁸, J. King²³, S. Klepser³⁴, W. Kluźniak³¹, Nu. Komin²¹, K. Kosack¹⁷, D. Kostunin³⁴, M. Kreter¹, G. Lamanna²², A. Lemière²⁸, M. Lemoine-Goumard²⁴, J.-P. Lenain¹⁵, E. Leser^{32,34}, C. Levy¹⁵, T. Lohse⁷, I. Lypova³⁴, J. Mackey⁴, J. Majumdar³⁴, D. Malyshev²⁶, V. Marandon³, A. Marcowith¹⁶, A. Mares²⁴, C. Mariaud²⁷, G. Martí-Devesa¹², R. Marx³, G. Maurin²², P.J. Meinties³⁷, A.M.W. Mitchell^{3,42}, R. Moderski³¹, M. Mohamed²³.

H.E.S.S. Coll., Nature 2019

MAGIC Coll., Nature 2019

Two Completely Different Cases

GRB190114C (MAGIC)

- Observations after 50 seconds
- >300 GeV (zenith of 60deg & partial moon)
- >20 sigma in first 20 min of observations MAGIC Coll., Nature 2019

10^{-6} 10^{-7}

GRB180720B (H.E.S.S.)

- Observations after 10 hours
- 100 440 GeV
- 5 sigma accumulated over 2 hours

→ Probing GRBs as extreme accelerators over a diverse range of timescales becomes possible!

Two Completely Different Cases

GRB190114C (MAGIC)

- Observations after 50 seconds
- >300 GeV (zenith of 60deg & partial moon)

GRB180720B (H.E.S.S.)

- Observations after 10 hours
- 100 440 GeV
- 5 sigma accumulated over 2 hours

Potsda

 \rightarrow Probing GRBs as extreme accelerators over a diverse range of timescales becomes possible!

GRB 221009A - The Brightest Of All Times

- LHAASO detection >10 TeV
- ~3000 s after the trigger, >64,000 photons with energies between ~200 GeV and ~7 TeV

 10^{-5}

 10^{-6}

Α

GRB 221009A - The Brightest Of All Times

Multi-Messenger Astronomy

see Lecture by Fonteini Oikonomou

Neutrinos & Gravitational Waves

Kathrin Egberts . Ground-Based Gamma-Ray Astronomy . Erice . July 2024 76

©DES

The Case of TXS 0506+056

see Lecture by Francis Halzen

A high-energy astrophysical neutrino in conjunction with a flaring blazar

4.1 σ (3 σ after trials) correlation

 First known source of HE neutrinos (& first extragalactic source of cosmic rays)

The Case of TXS 0506+056

The Case of TXS 0506+056

The Era of Gravitational Wave Astronomy The Case of GW 170817

^{See} Lecture by Patricia Schmidt

OPEN ACCESS

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L12 (59pp), 2017 October 20

© 2017. The American Astronomical Society. All rights reserved.

Multi-messenger Observations of a Binary Neutron Star Merger*

ollaboration, AstroSat Cadmium Zinc laboration, The Swift Collaboration, ollaboration, The DLT40 Collaboration, ATCA: Australia Telescope Compact eeper, Wider, Faster Program), AST3, EM, GROWTH, JAGWAR, Caltechonsortium, KU Collaboration, Nordic ent Robotic Observatory of the South Collaboration, IKI-GW Follow-up AWC Collaboration, The Pierre Auger fra Team at McGill University, DFN: R, and SKA South Africa/MeerKAT

Received 2017 October 3; revised 2017 October 6; accepted 2017 October 6; published 2017 October 16

>3500 authors >70 observatories

A remarkable example of international collaboration!

Non-Gamma Science

Use the TeV instruments for other types of measurements

- Example: cosmic-ray electrons
- Due to their isotropy, very good separation power between hadrons and electrons required
- Can expand the measurable spectrum significantly beyond satellite capabilities

Cherenkov Telescope Array Observatory

- Also other cosmic-ray measurements (e.g. proton, iron)
- Measurements of EBL in blazar absorption
- Stellar interferometry...

IV. Outlook

New experiments are around the corner: planning or construction phase

The next generation: CTAO & SWGO

IACTs

Cherenkov Telescope Array Observatory

Kathrin Egberts . Ground-Based Gamma-Ray Astronomy . Erice . July 2024 83

The next generation: CTAO & SWGO

PDAs

Cherenkov Telescope Array Observatory

CTAO: the Key-Science-Project Surveys

CTA Galactic Plane Survey: Performance Study

simulation of the CTAO Gal. Plane

Cherenkov Telescope Array Observatory

Kathrin Egberts . Ground-Based Gamma-Ray Astronomy . Erice . July 2024 87

3

Large-Scale Diffuse Emission in the CTAO Era

Conclusion

- Gamma-rays at VHE and UHE are a crucial probe to study cosmic-ray accelerators to highest energies
- Current generation of ground-based detectors have shown that there is an incredible diverseness and richness in the gamma-ray sky
- Discovery space at the sensitivity limit, new detections, population studies, indepth understanding of our Milky Way - with the tenfold sensitivity of nextgeneration instruments in reach
- Coverage of both hemispheres guarantees extragalactic as well as Galactic science to be ideally explored
- Strong complementarity between particle detector arrays and imaging atmospheric Cherenkov telescopes

Thank you!

H.E.S.S. CTAO Cherenkov Telescope Array Observatory

Kathrin Egberts . Ground-Based Gamma-Ray Astronomy . Erice . July 2024 90